CSE 521: Algorithms

Graphs and Graph Algorithms
Larry Ruzzo
Graphs

An extremely important formalism for representing (binary) relationships
Objects: "vertices," aka "nodes"
Relationships between pairs:
 "edges," aka "arcs"
Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges
Undirected Graph \(G = (V,E) \)
Graph Traversal

Learn the basic structure of a graph
"Walk," via edges, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways:
Breadth-First Search
Depth-First Search
Breadth-First Search

Idea: Explore from s in all possible directions, layer by layer.

BFS algorithm.

L_0 = \{ s \}.

L_1 = all neighbors of L_0.

L_2 = all nodes not in L_0 or L_1, and having an edge to a node in L_1.

L_{i+1} = all nodes not in earlier layers, and having an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance (i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.
Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x.

Edges into then-undiscovered vertices define a tree — the "breadth first spanning tree" of G.

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.

All non-tree edges join vertices on the same or adjacent levels.

not true of every spanning tree!
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start all edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start all edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start all edges connect same/adjacent levels
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start.
All edges connect same/adjacent levels.
Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (below) finds a different tree, but it also has interesting structure...
Depth-First Search

Follow the first path you find as far as you can go
Back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack
Global Initialization:

for all nodes \(v \), \(v.dfs# = -1 \) // mark \(v \) "undiscovered"
\(\text{dfscounter} = 0 \)

DFS(\(v \))

\(v.dfs# = \text{dfscounter}++ \) // \(v \) "discovered", number it
for each edge \((v,x) \)
 if \((x.dfs# = -1) \) // tree edge (\(x \) previously undiscovered)
 DFS(\(x \))
else … // code for back-, fwd-, parent-
 // edges, if needed; mark \(v \)
 // "completed," if needed
Why fuss about trees (again)?

BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" – *only descendant/ancestor*

Proof below
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack (Edge list):

A (B,J)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,E,F)
 - E (D,F)
 - F (D,E,G)

The diagram shows a depth-first search starting from vertex A, with edges marked and vertices colored according to their status.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:

- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,F,F)
- E (D,F)
- F (B,E,G)
- G (C,F)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)
 - E (D, F)
 - F (E, G, D)
 - G (C, F)

Color code:
- undiscovered
- discovered
- fully-explored

DFS(A)

- A, 1
- B, 2
- C, 3
- D, 4
- E, 5
- F, 6
- G, 7
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,F,F)
E (D,F)
F (D,E,G)

Color code:
undiscovered
discovered
fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- Undiscovered
- Discovered
- Fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)

A,1
B,2
C,3
G,7
D,4
F,6
E,5
H
I
K
J
L
M
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,F,E)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)

```
DFS(A)
```
Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

Color code:
- undiscovered
- discovered
- fully-explored

DFS(A)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - I (H)
 - D,F
 - E

Graph:
- A connected to B
- B connected to A, C, J
- C connected to B, D, G, H
- H connected to C, I, J
- I connected to H
- D connected to F
- E
- F connected to D
- G connected to D
- H connected to G
- I connected to H
- K connected to L
- L connected to K
- M connected to K
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- I (H)

DFS(A)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)

Graph:
- A (1)
- B (2)
- C (3)
- D (4)
- E (5)
- F (6)
- G (7)
- H (8)
- I (9)
- J
- K
- L
- M
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - J (A,B,H,K,L)
 - K (J,L)
 - L (J,K,M)

34
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, J)
 - J (A, B, H, K, L)
 - K (J, L)
 - L (J, K, M)
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - J (A,B,H,K,L)
 - K (J,L)
 - L (K)
 - M (K)

DFS(A)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
(Edge list)

A (B, J)
B (A, C, J)
C (B, D, G, H)
H (C, I, J)
J (A, B, H, K, L)

A,1
B,2
C,3
D,4
E,5
F,6
G,7
H,8
I,9
J,10
K,11
L,12
M,13
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)

- A,1
- B,2
- C,3
- D,4
- E,5
- F,6
- G,7
- H,8
- I,9
- J,10
- K,11
- L,12
- M,13
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)

43
Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B, J)
Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
(Edge list)
A (B, J)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)

TA-DA!!
DFS(A)

Edge code:
Tree edge
Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
Tree edge
Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge
Properties of (Undirected) DFS(v)

Like BFS(v):

DFS(v) visits \(x \) if and only if there is a path in \(G \) from \(v \) to \(x \) (through previously unvisited vertices)

Edges into then-undiscovered vertices define a tree – the "depth first spanning tree" of \(G \)

Unlike the BFS tree:

the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root
non-tree edges never join vertices on the same or adjacent levels

BUT…
Non-tree edges

All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree.

No cross edges!
Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"--only descendant/ancestor
A simple problem on trees

Given: tree T, a value $L(v)$ defined for every vertex v in T

Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at v (including v itself).

How? Depth first search, using:

$$M(v) = \begin{cases}
L(v) & \text{if } v \text{ is a leaf} \\
\min(L(v), \min_{w, \text{a child of } v} M(w)) & \text{otherwise}
\end{cases}$$
Application: Articulation Points

A node in an undirected graph is an **articulation point** iff removing it disconnects the graph (or, more generally, increases the number of connected components)

Articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components
Identifying key proteins on the anthrax predicted network

Articulation point proteins
Articulation Points

Articulation point iff its removal disconnects the graph.
Articulation Points
Simple Case: Artic. Pts in a tree

Leaves – never articulation points
Internal nodes – always articulation points
Root – articulation point if and only if two or more children

Non-tree: extra edges remove some articulation points (which ones?)
Articulation Points from DFS

Root node is an articulation point iff it has more than one child.
Leaf is never an articulation point.

Non-leaf, non-root node u is an articulation point iff:

- There exists some child y of u such that no non-tree edge goes above u from y or below u.

If u’s removal does NOT separate x, there must be an exit from x's subtree. How? Via back edge.
Articulation Points: the "LOW" function

Definition: LOW(v) is the lowest dfs# of any vertex that is either in the dfs subtree rooted at v (including v itself) or directly connected to a vertex in that subtree by a back edge.

Key idea 1: if some child x of v has LOW(x) ≥ dfs#(v) then v is an articulation point (excl. root)

Key idea 2: LOW(v) =
\[
\min \left(\{ \text{dfs#}(v) \} \cup \{ \text{LOW}(w) \mid w \text{ a child of } v \} \cup \{ \text{dfs#}(x) \mid \{v,x\} \text{ is a back edge from } v \} \right)
\]
DFS(v) for
Finding Articulation Points

Global initialization: dfscounter = 0; v.dfs# = -1 for all v.

DFS(v)

v.dfs# = dfscounter++

v.low = v.dfs# // initialization

for each edge {v,x}

 if (x.dfs# == -1) // x is undiscovered
 DFS(x)

 v.low = min(v.low, x.low)
 if (x.low >= v.dfs#)
 print "v is art. pt., separating x"
 else if (x is not v's parent)
 v.low = min(v.low, x.dfs#)

Equiv: "if({v,x} is a back edge)"
Why?
Articulation Point

Vertex	DFS #	Low
A | | |
B | | |
C | | |
D | | |
E | | |
F | | |
G | | |
H | | |
I | | |
J | | |
K | | |
L | | |
M | | |
Articulation Point
Articulation Points

<table>
<thead>
<tr>
<th>Vertex</th>
<th>DFS #</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>M</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
Summary

Graphs – abstract relationships among pairs of objects
Terminology – node/vertex/vertices, edges, paths, multi-edges, self-loops, connected
Representation – edge list, adjacency matrix
Nodes vs Edges – $m = O(n^2)$, often less
BFS – Layers, queue, shortest paths, all edges go to same or adjacent layer
DFS – recursion/stack; all edges ancestor/descendant
Algorithm – articulation points