CSE 521
Design and Analysis of Algorithms I

Overview

Larry Ruzzo
CSE 521, Wi '13: Design and Analysis of Algorithms I

Lecture: MGH 271 (schematic)

Instructor: Larry Ruzzo, ruzzo@cs
TA: Cyrus Rashtchian, cyrash@cs

Course Email: cse521a_wi13@uw.edu

Office Hours Location Phone
CSE 554 206-543-6298

Discussion Board: Announcements, Homework, etc.

Catalog Description: Introduction to design and analysis of algorithms: recursion, divide and conquer, balancing, analysis of algorithms. NP-completeness.

Prerequisite: CSE 326 or equivalent. CSE majors only.

Grading: Homework, Final. Overall weights 60%, 40%, roughly.

Extra Credit: Assignments may include "extra credit" sections. These will enrich your understanding of the material, not for the glory, not the points, and don't start extra credit until the basics are complete.

Collaboration: Homeworks are all individual, not group, exercises. Discussing them with others is fine, even homework solutions. Follow the "Gilligan's Island Rule": if you discuss the assignment with someone else, do not discuss it with others. If you watch 30+ minutes of TV (Gilligan's Island reruns especially recommended) before you begin, you may not look at other people's written solutions to these problems, not in your friends' notes, not in the book. Misconduct Policy, and the links there.

http://www.cs.washington.edu/521
What you have to do

Weekly Homework (~60% of grade)
 Programming?
 perhaps some small projects
 Written homework assignments
 English exposition and pseudo-code
 Analysis and argument as well as design

Final Exam (~40%)

Late Policy:
 Papers and/or electronic turnins generally due in class;
 minus 20% per day thereafter
Textbook

What the course is about

Design of Algorithms

design methods
common or important types of problems
analysis of algorithms - efficiency
correctness proofs
What the course is about

Complexity, NP-completeness and intractability

- solving problems in principle is not enough
 - algorithms must be *efficient*

 *some problems have *no efficient solution*

NP-complete problems

- important & useful class of problems whose solutions
 (seemingly) cannot be found efficiently, but *can be*
 checked easily
Very Rough Division of Time

Algorithms (6-7 weeks)
 Analysis
 Techniques: greedy, divide&conquer, dynamic programming,
 Toolkit: flows & matchings, linear programming

Applications

Complexity & NP-completeness (2-3 weeks)

Check online schedule page for (evolving) details
Complexity Example

Cryptography (e.g., RSA, SSL in browsers)
 Secret: p,q prime, say 512 bits each
 Public: n which equals p x q, 1024 bits

In principle
 there is an algorithm that given n will find p and q:
 try all $2^{512} > 1.3 \times 10^{154}$ possible p’s: kinda slow…

In practice
 no fast algorithm known for this problem (on non-quantum computers)
 security of RSA depends on this fact
 (“quantum computing”: strongly driven by possibility of changing this)
Algorithms versus Machines

We all know about Moore’s Law and the exponential improvements in hardware...

Ex: sparse linear equations over 25 years

10 orders of magnitude improvement!
25 years progress solving sparse linear systems

hardware: 4 orders of magnitude

Source: Sandia, via M. Schultz
25 years progress solving sparse linear systems

hardware: 4 orders of magnitude

software: 6 orders of magnitude

Source: Sandia, via M. Schultz
Algorithms or Hardware?

The N-Body Problem:

in 30 years

10^7 hardware

10^{10} software

Source: T. Quinn
Goals

Correctness
- often subtle

Analysis
- often subtle

Generality, Simplicity, ‘Elegance’

Efficiency
- time, memory, network bandwidth, …
Algorithms: a sample problem

Printed circuit-board company has a robot arm that solders components to the board

Time: proportional to total distance the arm must move from initial rest position around the board and back to the initial position

For each board design, find best order to do the soldering
Printed Circuit Board
Printed Circuit Board
A Well-defined Problem

Input: Given a set \(S \) of \(n \) points in the plane
Output: The shortest cycle tour that visits each point in the set \(S \).

Better known as “TSP”

How might you solve it?
Nearest Neighbor Heuristic

Start at some point \(p_0 \)
Walk first to its nearest neighbor \(p_1 \)
Repeatedly walk to the nearest unvisited neighbor \(p_2, p_3, \ldots \) until all points have been visited
Then walk back to \(p_0 \)

heuristic:
A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood. May be good, but usually *not* guaranteed to give the best or fastest solution.
Nearest Neighbor Heuristic

\[p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_6 \]
An input where it works badly

length ~ 84

p_0
An input where it works badly

optimal soln for this example
length = 63.8
Revised idea - Closest pairs first

Repeatedly join the closest pair of points
(s.t. result can still be part of a single loop in the end. I.e., join endpoints, but not points in middle, of path segments already created.)

How does this work on our bad example?
Another bad example
Another bad example

$$1 \quad 6 + \sqrt{10} = 9.16$$

vs

$$8$$
Something that works

“Brute Force Search”: For each of the $n! = n(n-1)(n-2)\ldots 1$ orderings of the points, check the length of the cycle you get.
Keep the best one
Two Notes

The two incorrect algorithms were greedy

- Often very natural & tempting ideas
- They make choices that look great “locally” (and never reconsider them)
- When greed works, the algorithms are typically efficient
 BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

20! is so large that checking one billion orderings per second would take 2.4 billion seconds (around 70 years!)

And growing:

\[n! \sim \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \sim 2^{O(n \log n)} \]
The Morals of the Story

Algorithms are important
 Many performance gains outstrip Moore’s law
Simple problems can be hard
 Factoring, TSP
Simple ideas don’t always work
 Nearest neighbor, closest pair heuristics
Simple algorithms can be very slow
 Brute-force factoring, TSP
And: for some problems, even the best algorithms are slow