1. Read section 7.5 of DPV and prove the equation at the bottom of page 226. The book DPV is available online at http://www.cs.berkeley.edu/ vazirani/algorithms.html

2. Consider the problem of writing an antivirus program that seeks to detect \(n \) different viruses. From an analysis of these viruses, you have found \(m \) code fragments that each appear in one or more viruses. For each \(i \in [m] \), say that fragment \(i \) appears in viruses \(S_i \) for some subset \(S_i \subseteq [n] \). However, since each fragment also may appear in legitimate code (creating false positives), we assign a cost \(c_i \geq 0 \) to each fragment.

Your goal is to choose a minimum-cost valid collection of code fragments \(T \) to search for. The cost of a collection \(T \) is defined to be \(\sum_{i \in T} c_i \). A collection \(T \) is valid if it can identify all \(n \) viruses; i.e. if \(\bigcup_{i \in T} S_i = [n] \). Let \(\text{OPT} \) denote the minimum cost of any valid collection of code fragments.

(a) Consider the following optimization problem:

\[
\min \sum_{i=1}^{m} x_i c_i \quad (1a)
\]

\[
x_1, \ldots, x_m \in \{0, 1\} \quad (1b)
\]

\[
\forall j \in [n], \sum_{i : j \in S_i} x_i \geq 1 \quad (1c)
\]

Prove that the solution to (1) is equal to \(\text{OPT} \).

(b)

\[
\min \sum_{i=1}^{m} x_i c_i \quad (2a)
\]

\[
\forall i \in [m], 0 \leq x_i \leq 1 \quad (2b)
\]

\[
\forall j \in [n], \sum_{i \in S_i \ni j} x_i \geq 1 \quad (2c)
\]

Denote the solution to (2) by \(\text{OPT}_{LP} \). Observe that \(\text{OPT}_{LP} \leq \text{OPT} \). Can any of the constraints in (2) be removed without changing the answer?

(c) Let \(x \in \mathbb{R}^n \) be a solution to (2). Suppose that each element of \([n]\) appears in at most \(f \) subsets. Choose \(T = \{i : x_i \geq 1/f\} \). Prove that \(T \) is a valid collection with cost at most equal to \(f \cdot \text{OPT} \).

(d) Write down the dual of (2).

(e) Again starting with a solution of (2), suppose that we take \(T = \{i : x_i > 0\} \). Prove that the cost of \(T \) is again \(\leq f \cdot \text{OPT} \). Hint: Use complementary slackness.

(f) Extra credit. Consider the following alternate strategy for constructing \(T \). For each \(i \), put \(i \) in \(T \) with probability \(x_i \).

i. What is the expected cost of this strategy?

ii. This strategy will generally not yield a valid collection. Prove that each \(j \in [n] \) is covered with probability \(\geq 1 - 1/e \). Hint: use convexity.
iii. Suppose we repeat this strategy \(\ln(n) \) times and take the union of all of the resulting collections. Prove that with constant probability this yields a valid collection that is \(\leq \OPT \cdot 2 \ln(n) \).

3. Given a directed graph \((V, E)\) with edge capacities \(c\) and vertices \(s, t \in V\), define \(\text{FRAC-MIN-CUT}\) to be the value of the following LP:

\[
\min \sum_{e \in E} c(e)h(e) \quad (3a)
\]

\[
h(v \rightarrow w) \geq 0 \forall (v, w) \in E \quad (3b)
\]

\[
h(v \rightarrow w) \geq g(v) - g(w) \forall (v, w) \in E \quad (3c)
\]

\[
g(s) = 1 \quad (3d)
\]

\[
g(t) = 0 \quad (3e)
\]

(a) Let \(\text{MIN-CUT}\) denote the minimum cost of any \(s-t\) cut. Prove that \(\text{FRAC-MIN-CUT}\) is equal to \(\text{MIN-CUT}\). \textit{Hint: You may use results from lecture such as LP strong duality, and the max-flow/min-cut theorem, without rederiving them.}

(b) Given a solution to (3), choose a random \(\theta \in [0, 1]\) and set \(A = \{v : g(v) \geq \theta\}\) and \(B = \{v : g(v) < \theta\}\). What is the expected (i.e. average) value of \(\|A, B\|\)? \textit{Hint: The only fact about probability that you need to know is linearity of expectation, meaning that the expectation of a sum of random variables is equal to the expectation of the sum.}

(c) Show that any choice of \(\theta \in (0, 1)\) yields a minimum cut.