
Chapter 2

The Multiplicative Weights

Update method

The Multiplicative Weights method is a simple idea which has been repeatedly discovered
in fields as diverse as Machine Learning, Optimization, and Game Theory. The setting for
this algorithm is the following. A decision maker has a choice of n decisions, and needs to
repeatedly make a decision and obtain an associated payoff. The decision maker’s goal,
in the long run, is to achieve a total payoff which is comparable to the payoff of that fixed
decision that maximizes the total payoff with the benefit of hindsight. While this best
decision may not be known a priori, it is still possible to achieve this goal by maintaining
weights on the decisions, and choosing the decisions randomly with probability propor-
tional to the weights. In each successive round, the weights are updated by multiplying
them with factors which depend on the payoff of the associated decision in that round.
Intuitively, this scheme works because it tends to focus higher weight on higher payoff
decisions in the long run.

This idea lies at the core of a variety of algorithms. Some examples include: Fre-
und and Schapire’s AdaBoost algorithm in machine learning [42]; algorithms for game
playing studied in economics (see Section 2.4), the Plotkin-Shmoys-Tardos algorithm for
packing and covering LPs [85], and its improvements in the case of flow problems by Garg-
Könneman [44] and Fleischer [40]; etc. The analysis of the running time uses a potential
function argument and the final running time is proportional to 1/ε2.

It has been clear to most researchers that these results are very similar, see for in-
stance, Khandekar’s PhD thesis [64]. In this chapter, we develop a unified framework
for all these algorithms. This meta algorithm is a generalization of Littlestone and War-
muth’s Weighted Majority algorithm from learning theory [78]. We call this the Multi-
plicative Weights algorithm (a similar algorithm, Hedge, was developed by Freund and
Schapire [42]). This algorithmic framework, and the derivation of previously known al-
gorithms using it, have been studied in much more detail in the survey paper [15]. We
also present some applications of this framework in designing algorithms to approximately
solve zero-sum games, feasibility problems with concave constraints over a convex domain,
and fractional packing and covering linear programs.

8

2.1 The Weighted Majority Algorithm

Consider the following setting. We are trying to invest in a certain stock. For simplicity,
think of its price movements as a sequence of binary events: up/down. (Below, this will
be generalized to allow non-binary events.) Each morning we try to predict whether the
price will go up or down that day; if our prediction happens to be wrong we lose a dollar
that day.

In making our predictions, we are allowed to watch the predictions of n “experts”
(who could be arbitrarily correlated, and who may or may not know what they are talking
about). The algorithm we present will be able to limit its losses to roughly the same as
the best of these experts. At first sight this may seem an impossible goal, since it is not
known until the end of the sequence who the best expert was, whereas the algorithm is
required to make predictions all along.

The algorithm does this by maintaining a weighting of the experts. Initially all have
equal weight. As time goes on, some experts are seen as making better predictions than
others, and the algorithm increases their weight proportionately. The Weighted Majority
algorithm is given in Figure 2.1.

Weighted majority algorithm

Initialization: Fix an ε ≤ 1
2 . For each expert i, associate the weight wi

(1) := 1.
For t = 1, 2, . . . , T :

1. Make the prediction that is the weighted majority of the experts’ predictions based
on the weights w1

(t), . . . , wn
(t). That is, predict “up” or “down” depending on which

prediction has a higher total weight of experts advising it (breaking ties arbitrarily).

2. For every expert i who predicts wrongly, decrease his weight for the next round by
multiplying it by a factor of (1− ε):

wi
(t+1) = (1− ε)wi

(t) (update rule). (2.1)

Figure 2.1: The Weighted Majority algorithm.

Theorem 1. After T steps, let mi
(T) be the number of mistakes of expert i and m(T) be

the number of mistakes our algorithm has made. Then we have the following bound for
every i:

m(T) ≤
2 lnn

ε
+ 2(1 + ε)mi

(T).

In particular, this holds for i which is the best expert, i.e. having the least mi
(T).

Proof: A simple induction shows that wi
(t+1) = (1 − ε)mi

(t)
. Let Φ(t) =

∑

i wi
(t) (“the

potential function”). Thus Φ(1) = n. Each time we make a mistake, the weighted majority

9

of experts also made a mistake, so at least half the total weight decreases by a factor 1−ε.
Thus, the potential function decreases by a factor of at least (1− ε/2):

Φ(t+1) ≤ Φ(t)

(

1

2
+

1

2
(1− ε)

)

= Φ(t)(1− ε/2).

Thus another simple induction gives Φ(T+1) ≤ n(1 − ε/2)m(T)
. Finally, since Φi

(T+1) ≥
wi

(T+1) for all i, the claimed bound follows by comparing the above two expressions and
using the fact that − ln(1− ε) ≤ ε + ε2 since ε < 1

2 . 2

The beauty of this analysis is that it makes no assumption about the sequence of events:
they could be arbitrarily correlated and could even depend upon our current weighting
of the experts. In this sense, this algorithm delivers more than initially promised, and
this lies at the root of why (after generalization) it can give rise to the diverse algorithms
mentioned earlier. In particular, the scenario where the events are chosen adversarially
resembles a zero-sum game, which we consider later in Section 2.3.1.

2.2 The Multiplicative Weights algorithm

In the general setting, we still have n experts. The set of events/outcomes may not
be necessarily binary and could even be infinite. To model this, we dispense with the
notion of predictions altogether, and instead suppose that in each round, every expert
recommends a course of action, and our task is to pick an expert and use his advice. At
this point the costs of all actions recommended by the experts is revealed by nature. We
suffer the cost of the action recommended by the expert we chose.

To motivate the Multiplicative Weights algorithm, consider the näıve strategy that, in
each iteration, simply picks an expert at random. The expected penalty will be that of the
“average” expert. Suppose now that a few experts clearly outperform their competitors.
This is easy to spot as events unfold, and so it is sensible to reward them by increasing
their probability of being picked in the next round (hence the multiplicative weight update
rule).

Intuitively, being in complete ignorance about the experts at the outset, we select
them uniformly at random for advice. This maximum entropy starting rule reflects our
ignorance. As we learn who the hot experts are and who the duds are, we lower the
entropy to reflect our increased knowledge. The multiplicative weight update is our means
of skewing the distribution.

We now set up some notation. Let t = 1, 2, . . . , T denote the current round, and let i
be a generic expert. In each round t, we select a distribution p(t) over the set of experts,
and select an expert i randomly from it (and use his advised course of action). At this
point, the costs of all the actions recommended by the experts are revealed by nature
in the form of the vector m(t) such that expert i incurs cost mi

(t). We assume that the
costs lie in the range [−1, 1]. This is the only assumption we make on the costs; nature
is completely free to choose the cost vector as long as these bounds are respected, even
with full knowledge of the actions recommended by the experts.

10

The expected cost to the algorithm for choosing the distribution p(t) is

E
i∈p(t)

[mi
(t)] = m(t) · p(t).

The total expected cost over all rounds is therefore
∑T

t=1 m(t) · p(t). Just as before, our
goal is to design an algorithm which achieves a total expected cost not too much more
than the cost of the best expert, viz. mini

∑T
t=1 mi

(t).

Multiplicative Weights algorithm

Initialization: Fix an ε ≤ 1
2 . For each expert i, associate the weight wi

(t) := 1.
For t = 1, 2, . . . , T :

1. Choose expert i with probability proportional to his weight wi
(t). I.e., use the

distribution p(t) = {w1
(t)/Φ(t), . . . , wn

(t)/Φ(t)} where Φ(t) =
∑

i wi
(t).

2. Observe the costs of the experts m(t).

3. Penalize the costly experts by updating their weights as follows: for every expert i,

wi
(t+1) =

{

wi
(t)(1− ε)mi

(t)
if mi

(t) ≥ 0

wi
(t)(1 + ε)−mi

(t)
if mi

(t) < 0

Figure 2.2: The Multiplicative Weights algorithm.

The following theorem —completely analogous to Theorem 1— bounds the total ex-
pected cost of the Multiplicative Weights algorithm (given in Figure 2.2) in terms of the
total cost of the best expert:

Theorem 2. In the given setup, the Multiplicative Weights algorithm guarantees that
after T rounds, for any expert i, we have

T
∑

t=1

m(t) · p(t) ≤

T
∑

t=1

mi
(t) + ε

T
∑

t=1

|mi
(t)|+

lnn

ε
.

Proof: We use the following facts, which follow immediately from the convexity of the
exponential function:

(1− ε)x ≤ (1− εx) if x ∈ [0, 1]

(1 + ε)−x ≤ (1− εx) if x ∈ [−1, 0]

The proof is along the lines of the earlier one, using the potential function Φ(t) =
∑

i wi
(t).

11

Since mi
(t) ∈ [−1, 1], using the facts above we have,

Φ(t+1) =
∑

i

wi
(t+1)

=
∑

i: mi
(t)≥0

wi
(t)(1− ε)mi

(t)
+

∑

i: mi
(t)<0

wi
(t)(1 + ε)−mi

(t)

≤
∑

i

wi
(t)(1− εmi

(t))

= Φ(t) − εΦ(t)
∑

i

mi
(t)pi

(t)

= Φ(t)(1− εm(t) · p(t))

≤ Φ(t) exp(−εm(t) · p(t)).

Here, we used the fact that pi
(t) = wi

(t)/Φ(t). Thus, by induction, after T rounds, we have

Φ(T+1) ≤ Φ(1) exp(−ε
T

∑

t=1

m(t) · p(t)) = n · exp(−ε
T

∑

t=1

m(t) · p(t)).

Furthermore, for every expert i,

Φ(T+1) ≥ wi
(T+1) = (1− ε)

∑
≥0 mi

(t)

· (1 + ε)−
∑

<0 mi
(t)

,

where the subscripts “≥ 0” and “< 0” in the summations refer to the rounds t where
mi

(t) is ≥ 0 and < 0 respectively. Now we get the desired bound by taking logarithms
and simplifying as before. We used the facts that ln(1

1−ε
) ≤ ε + ε2 and ln(1 + ε) ≥ ε− ε2

for ε ≤ 1
2 . 2

Remark: From the proof, it can be seen that the following multiplicative update rule:

wi
(t+1) = wi

(t)(1− εmi
(t))

regardless of the sign of mi
(t), would also give the same bounds. Such a rule may be easier

to implement.

Corollary 1. If the costs of all experts lie in the range [0, 1], then the Multiplicative
Weights algorithm also guarantees that after T rounds, for any distribution p on the
experts,

T
∑

t=1

m(t) · p(t) ≤ (1 + ε)

T
∑

t=1

m(t) · p +
lnn

ε
.

Proof: This corollary follows immediately from Theorem 2, by taking a convex combi-
nation of the inequalities for all experts i with the distribution p. 2

12

2.2.1 Gains instead of losses

There are situations where it makes more sense for the vector m(t) to specify gains for
each expert rather than losses. Now our goal is to get as much total expected payoff as
possible in comparison to the total payoff of the best expert. We can get an algorithm
for this case simply by running the Multiplicative Weights algorithm using the loss vector
−m(t).

The algorithm that results updates the weight of expert i by a factor of (1 + ε)mi
(t)

when mi
(t) ≥ 0, and (1− ε)−mi

(t)
when mi

(t) < 0. The following theorem follows directly
from Theorem 2 by simply negating the quantities:

Theorem 3. In the given setup, the Multiplicative Weights algorithm (for gains) guar-
antees that after T rounds, for any expert i, we have

T
∑

t=1

m(t) · p(t) ≥
T

∑

t=1

mi
(t) − ε

T
∑

t=1

|mi
(t)| −

lnn

ε
.

2.3 Applications

Typically, the Multiplicative Weights method is applied in the following manner. A pro-
totypical example is to solve a constrained optimization problem. We then let an expert
represent each constraint in the problem, and the events correspond to points in the
domain of interest. The penalty of the expert is made proportional to how well the cor-
responding constraint is satisfied on the point represented by an event. This might seem
counterintuitive, but recall that we reduce an expert’s weight depending on his penalty,
and if an expert’s constraint is well satisfied on events so far we would like his weight to
be smaller, so that the algorithm focuses on experts whose constraints are poorly satis-
fied. With these weights, the algorithm generates a maximally adversarial event, i.e. the
event whose corresponding point maximizes the expected penalty, i.e. the weighted sum
of penalties. With this intuition, we can describe the following applications.

2.3.1 Solving zero-sum games approximately

We show how the general algorithm above can be used to approximately solve zero-sum
games. This is a duplication of the results of Freund and Schapire [43], who gave the same
algorithm but a different proof of convergence that used KL-divergence.

Let A be the payoff matrix of a finite 2-player zero-sum game, with n rows (the
number of columns will play no role). When the row player plays strategy i and the
column player plays strategy j, then the payoff to the column player is A(i, j) := Aij . We
assume that A(i, j) ∈ [0, 1]. If the row player chooses his strategy i from a distribution p

over the rows, then the expected payoff to the column player for choosing a strategy j is
A(p, j) := Ei∈p[A(i, j)]. Thus, the best response for the column player is the strategy j
which maximizes this payoff. Similarly, if the column player chooses his strategy j from a

13

distribution q over the columns, then the expected payoff he gets if the row player chooses
the strategy i is A(i,q) := Ej∈q[A(i, j)]. Thus, the best response for the row player is the
strategy i which minimizes this payoff. John von Neumann’s min-max theorem says that
if each of the players chooses a distribution over their strategies to optimize their worst
case payoff (or payout), then the value they obtain is the same:

min
p

max
j

A(p, j) = max
q

min
i

A(i,q) (2.2)

where p (resp., q) varies over all distributions over rows (resp., columns). Also, i (resp., j)
varies over all rows (resp., columns). The common value of these two quantities, denoted
λ∗, is known as the value of the game.

Let δ > 0 be an error parameter. We wish to approximately solve the zero-sum game
up to additive error of δ, namely, find mixed row and column strategies p̃ and q̃ such that

λ∗ − δ ≤ min
i

A(i, q̃) (2.3)

max
j

A(p̃, j) ≤ λ∗ + δ. (2.4)

The algorithmic assumption about the game is that given any distribution p on ex-
perts, we have an efficient way to pick the best event, namely, the pure column strategy j
that maximizes A(p, j). This quantity is at least λ∗ from the definition above. Call this
algorithm the Oracle.

Theorem 4. Given an error parameter δ > 0, there is an algorithm which solves the
zero-sum game up to an additive factor of δ using O(log n

δ2) calls to Oracle, with an
additional processing time of O(n) per call.

Proof: We map our general algorithm from Section 2.2 to this setting by considering (2.3)
as specifying n linear constraints on the probability vector q̃: viz., for all rows i, A(i, q̃) ≥
λ∗ − δ. Now, following the intuition given in the beginning of this section, we make our
“experts” to correspond to pure strategies of the row player. Thus a distribution on the
experts corresponds to a mixed row strategy. “Events” correspond to pure strategies of
the column player. The penalty paid by an expert i when an event j happens is A(i, j).

In each round, given a distribution p(t) on the rows, we will set the event j(t) to be
the best response strategy to p(t) for the column player, by calling Oracle. Thus, the
cost vector m(t) is the j(t)-th column of the matrix A.

Since all A(i, j) ∈ [0, 1], we can apply Corollary 1 to get that after T rounds, for any
distribution on the rows p, we have

T
∑

t=1

A(p(t), j(t)) ≤ (1 + ε)

T
∑

t=1

A(p, j(t)) +
lnn

ε
.

Dividing by T , and using the fact that A(p, j(t)) ≤ 1 and that for all t, A(p(t), j(t)) ≥ λ∗,
we get

λ∗ ≤
1

T

T
∑

t=1

A(p(t), j(t)) ≤
1

T

T
∑

t=1

A(p, j(t)) + ε +
lnn

εT

14

Setting p = p∗, the optimal row strategy, we have A(p, j) ≤ λ∗ for any j. By setting
ε = δ

2 and T = ⌈4 ln n
δ2 ⌉, we get that

λ∗ ≤
1

T

T
∑

t=1

A(p(t), j(t)) ≤
1

T

T
∑

t=1

A(p, j(t)) + δ ≤ λ∗ + δ. (2.5)

Thus, 1
T

∑T
t=1 A(p(t), j(t)) is an (additive) δ-approximation to λ∗.

Let t̃ be the round t with the minimum value of A(p(t), j(t)). We have, from (2.5),

A(p(t̃), j(t̃)) ≤
1

T

T
∑

t=1

A(p(t), j(t)) ≤ λ∗ + δ.

Since j(t̃) maximizes A(p(t̃), j) over all j, we conclude that p(t̃) is an approximately optimal
mixed row strategy, and thus we can set p∗ := p(t̃). 1

We set q∗ to be the distribution which assigns to column j the probability |{t: j(t)=j}|
T

.
From (2.5), for any row strategy i, by setting p to be concentrated on the pure strategy
i, we have

λ∗ − δ ≤
1

T

T
∑

t=1

A(i, j(t)) = A(i,q∗)

which shows that q∗ is an approximately optimal mixed column strategy. 2

2.3.2 Approximating Linear Feasibility Programs on Convex Domains

Plotkin, Shmoys, and Tardos [85] generalized some known flow algorithms to a framework
for approximately solving fractional packing and covering problems. Their algorithm is a
quantitative version of the classical Lagrangian relaxation idea, and applies also to general
linear programs. Below, we derive the algorithm for convex programs which can be stated
as trying to find a point in a convex domain satisfying a number of linear inequalities.
We will then mention the slight modification that yields better running time for fractional
packing and covering LPs.

The basic problem is to check the feasibility of the following convex program:

∃?x ∈ P : Ax ≥ b (2.6)

where A is an m× n matrix, x ∈ R
n, and P is a convex set in R

n. Intuitively, the set P
represents the “easy” constraints to satisfy, such as non-negativity, and A represents the
“hard” constraints to satisfy.

We wish to design an algorithm that given an error parameter δ > 0, either solves the
problem to an additive error of δ, i.e., finds an x ∈ P such that for all i, Aix ≥ bi − δ, or
failing that, proves that the system is infeasible. Here, Ai is the ith row of A.

1Alternatively, we can set p
∗ = 1

T

∑
t
p

(t). For let j∗ be the optimal column player response to p
∗.

Then we have A(p∗, j∗) = 1
T

∑
t
A(p(t), j∗) ≤ 1

T

∑
t
A(p(t), j(t)) ≤ λ∗ + δ.

15

We assume the existence of an algorithm, called Oracle, which, given a probability
vector p on the m constraints, solves the following feasibility problem:

∃?x ∈ P : p⊤Ax ≥ p⊤b (2.7)

It is reasonable to expect such an optimization procedure to exist (indeed, such is the
case for many applications) since we only need to check the feasibility of one constraint
rather than m. If the feasibility problem (2.6) has a solution x∗, then the same solution
also satisfies (2.7) for any probability vector p over the constraints. Thus, if there is a
probability vector p over the constraints such that no x ∈ P satisfies (2.7), then it is proof
that the original problem is infeasible.

We assume that the Oracle satisfies the following technical condition, which is nec-
essary for deriving running time bounds:

Definition 1. An (ℓ, ρ)-bounded Oracle, for parameters 0 ≤ ℓ ≤ ρ, is an algorithm
which given a probability vector p over the constraints, solves the feasibility problem (2.7).
Furthermore, there is a fixed subset I ⊆ [m] of constraints such that whenever the Oracle

manages to find a point x ∈ P satisfying (2.7), the following holds:

∀i ∈ I : Aix− bi ∈ [−ℓ, ρ]

∀i /∈ I : Aix− bi ∈ [−ρ, ℓ]

The value ρ is called the width of the problem.

In previous work, such as [85], only (ρ, ρ)-bounded Oracles are considered. We
separate out the upper and lower bounds in order to obtain tighter guarantees on the
running time. The results of [85] can be recovered simply by setting ℓ = ρ.

Theorem 5. Let δ > 0 be a given error parameter. Suppose there exists an (ℓ, ρ)-bounded
Oracle for the feasibility problem (2.6). Assume that ℓ ≥ δ

2 . Then there is an algorithm
which either solves the problem up to an additive error of δ, or correctly concludes that
the system is infeasible, making only O(ℓρ log(m)

δ2) calls to the Oracle, with an additional
processing time of O(m) per call.

Proof: The condition ℓ ≥ δ
2 is only technical, and if it is not met we can just redefine ℓ

to be δ
2 . To map our general framework to this situation, we have an expert representing

each of the m constraints. Events correspond to vectors x ∈ P. The loss of the expert
corresponding to constraint i for event x is 1

ρ
[Aix− bi] (so that the costs lie in the range

[−1, 1]).
In each round t, given a distribution over the experts (i.e. the constraints) p(t), we

run the Oracle with p(t). If the Oracle declares that there is no x ∈ P such that

p(t)⊤Ax ≥ p(t)⊤b, then we stop, because now p(t) is proof that the problem (2.6) is
infeasible.

So let us assume that this doesn’t happen, i.e. in all rounds t, the Oracle manages

to find a solution x(t) such p(t)⊤Ax ≥ p(t)⊤b. Since the cost vector to the Multiplicative

16

Weights algorithm is specified to be m(t) := 1
ρ
[Ax(t) − b], we conclude that the expected

cost in each round is non-negative:

m(t) · p(t) =
1

ρ
[Ax(t) − b] · p(t) =

1

ρ
[p(t)⊤Ax− p(t)⊤b] ≥ 0.

Let i ∈ I. Then Theorem 2 tells us that after T rounds,

0 ≤

T
∑

t=1

1

ρ
[Aix

(t) − bi] + ε

T
∑

t=1

1

ρ
|Aix

(t) − bi|+
lnm

ε

= (1 + ε)

T
∑

t=1

1

ρ
[Aix

(t) − bi] + 2ε
∑

<0

1

ρ
|Aix

(t) − bi|+
lnm

ε

≤ (1 + ε)

T
∑

t=1

1

ρ
[Aix

(t) − bi] +
2εℓ

ρ
T +

lnm

ε

Here, the subscript “< 0” refers to the rounds t when Aix
(t)− bi < 0. The last inequality

follows because if Aix
(t) − bi < 0, then |Aix

(t) − bi| ≤ ℓ. Dividing by T , multiplying by
ρ, and letting x̄ = 1

T

∑T
t=1 x(t) (note that x̄ ∈ P since P is a convex set), we get that

0 ≤ (1 + ε)[Aix̄− bi] + 2εℓ +
ρ ln(m)

εT
.

Now, if we choose ε = δ
4ℓ

(note that ε ≤ 1
2 since ℓ ≥ δ

2), and T = ⌈8ℓρ ln(m)
δ2 ⌉, we get that

0 ≤ (1 + ε)[Aix̄− bi] + δ =⇒ Aix̄ ≥ bi − δ.

Reasoning similarly for i /∈ I, we get the same inequality. Putting both together, we
conclude that x̄ satisfies the feasibility problem (2.6) up to an additive δ factor, as desired.
2

Concave constraints

The algorithm of Section 2.3.2 works not just for linear constraints over a convex domain,
but also for concave constraints. Imagine that we have the following feasibility problem:

∃?x ∈ P : ∀i ∈ [m] : fi(x) ≥ 0 (2.8)

where, as before, P ∈ R
n is a convex domain, and for i ∈ [m], fi : P → R are con-

cave functions. We wish to satisfy this system approximately, up to an additive error
of δ. Again, we assume the existence of an Oracle, which, when given a probability
distribution p = 〈p1, p2, . . . , pm〉

⊤, solves the following feasibility problem:

∃?x ∈ P :
∑

i

pifi(x) ≥ 0 (2.9)

An Oracle would be called (ℓ, ρ)-bounded there is a fixed subset of constraints I ⊆ [m]
such that whenever it returns a feasible solution x to (2.9), all constraints i ∈ I take
values in the range [−ℓ, ρ] on the point x, and all the rest take values in [−ρ, ℓ].

17

Theorem 6. Let δ > 0 be a given error parameter. Suppose there exists an (ℓ, ρ)-bounded
Oracle for the feasibility problem (2.8). Assume that ℓ ≥ δ

2 . Then there is an algorithm
which either solves the problem up to an additive error of δ, or correctly concludes that
the system is infeasible, making only O(ℓρ log(m)

δ2) calls to the Oracle, with an additional
processing time of O(m) per call.

Proof: Just as before, we have an expert for every constraint, and events correspond to
x ∈ P. The loss of the expert corresponding to constraint i for event x is 1

ρ
fi(x).

Now we run the Multiplicative Weights algorithm with this setup. Again, if at any
point the Oracle declares that (2.9) is infeasible, we immediately halt and declare the
system (2.8) infeasible. So assume this never happens. Then as before, the expected cost
in each round is m(t) ·p(t) ≥ 0. Now, applying Theorem 2 as before, we conclude that for
any i ∈ I, we have

0 ≤ (1 + ε)

T
∑

t=1

1

ρ
fi(x

(t)) +
2εℓ

ρ
T +

lnm

ε
.

Dividing by T , multiplying by ρ, and letting x̄ = 1
T

∑T
t=1 x(t) (note that x̄ ∈ P since P is

a convex set), we get that

0 ≤ (1 + ε)fi(x̄) + 2εℓ +
ρ ln(m)

εT
,

since 1
T

∑T
t=1 fi(x

(t)) ≤ fi(
1
T

∑T
t=1 x(t)), by Jensen’s inequality, since all the fi are concave.

Now, if we choose ε = δ
4ℓ

(note that ε ≤ 1
2 since ℓ ≥ δ

2), and T = ⌈8ℓρ ln(m)
δ2 ⌉, we get

that
0 ≤ (1 + ε)fi(x̄) + δ =⇒ fi(x̄) ≥ −δ.

Reasoning similarly for i /∈ I, we get the same inequality. Putting both together, we
conclude that x̄ satisfies the feasibility problem (2.8) up to an additive δ factor, as desired.
2

Approximate Oracles

The algorithm described in the previous section allows some slack for the implementation
of the Oracle. This slack is very useful in designing efficient implementations for the
Oracle.

Define a δ-approximate Oracle for the feasibility problem (2.6) to be one that solves
the feasibility problem (2.7) up to an additive error of δ. That is, given a probability
vector p on the constraints, either it finds an x ∈ P such that p⊤Ax ≥ p⊤b − δ, or it
declares correctly that (2.7) is infeasible.

Theorem 7. Let δ > 0 be a given error parameter. Suppose there exists an (ℓ, ρ)-bounded
δ
3 -approximate Oracle for the feasibility problem (2.6). Assume that ℓ ≥ δ

3 . Then there
is an algorithm which either solves the problem up to an additive error of δ, or correctly
concludes that the system is infeasible, making only O(ℓρ log(m)

δ2) calls to the Oracle, with
an additional processing time of O(m) per call.

18

Proof: We run the algorithm of the previous section with the given Oracle, setting
ε = δ

6ℓ
. Now, in every round, the expected payoff is at least − δ

3ρ
. Simplifying as before,

we get that after T rounds, we have, the average point x̄ = 1
T

∑T
t=1 x(t) returned by the

Oracle satisfies

−
δ

3
≤ (1 + ε)[Aix̄− bi] + 2εℓ +

ρ ln(m)

εT
.

Now, if T = ⌈18ℓρ ln(m)
δ2 ⌉, then we get that for all i, Aix̄ ≥ bi − δ, as required. 2

Fractional Covering Problems

In fractional covering problems, the framework is the same as above, with the crucial
difference that the coefficient matrix A is such that Ax ≥ 0 for all x ∈ P, and b > 0. A
δ-approximation solution to this system is an x ∈ P such that Ax ≥ (1− δ)b.

We assume without loss of generality (by appropriately scaling the inequalities) that
bi = 1 for all rows, so that now we desire to find an x ∈ P which satisfies the system
within an additive δ factor. Since for all x ∈ P, we have Ax ≥ 0, and since all bi = 1, we
conclude that for any i, Aix − bi ≥ −1. Thus, we assume that there is a (1, ρ)-bounded
Oracle for this problem. Now, applying Theorem 5, we get the following:

Theorem 8. Suppose there exists a (1, ρ)-bounded Oracle for the program Ax ≥ b

with x ∈ P. Given an error parameter δ > 0, there is an algorithm which computes a
δ-approximate solution to the program, or correctly concludes that it is infeasible, using
O(ρ log(m)

δ2) calls to the Oracle, plus an additional processing time of O(m) per call.

Fractional Packing Problems

A fractional packing problem can be written as

∃?x ∈ P : Ax ≤ b

where P is a convex domain such that Ax ≥ 0 for all x ∈ P, and b > 0. A δ-approximate
solution to this system is an x ∈ P such that Ax ≤ (1 + δ)b.

Again, we assume that bi = 1 for all i, scaling the constraints if necessary. Now by
rewriting this system as

∃?x ∈ P : −Ax ≥ −b

we cast it in our general framework, and a solution x ∈ P which satisfies this up to an
additive δ is a δ-approximate solution to the original system. Since for all x ∈ P, we have
Ax ≥ 0, and since all bi = 1, we conclude that for any i, −Aix+ bi ≤ 1. Thus, we assume
that there is a (1, ρ)-bounded Oracle for this problem. Now, applying Theorem 5, we
get the following:

Theorem 9. Suppose there exists a (1, ρ)-bounded Oracle for the program −Ax ≥ −b

with x ∈ P. Given an error parameter δ > 0, there is an algorithm which computes a
δ-approximate solution to the program, or correctly concludes that it is infeasible, using
O(ρ log(m)

δ2) calls to the Oracle, plus an additional processing time of O(m) per call.

19

2.4 A brief history of various applications of the Multiplica-

tive Weights method

An algorithm similar in flavor to the Multiplicative Weights algorithm were proposed in
game theory in the early fifties [29, 28, 86]. Following Brown [28], this algorithm was
called “Fictitious Play”: at each step each player observes actions taken by his opponent
in previous stages, updates his beliefs about his opponents’ strategies, and chooses my-
opic pure best responses against these beliefs. In the simplest case, the player simply
assumes that the opponent is playing form an stationary distribution and sets his current
belief of the opponent’s distribution to be the empirical frequency of the strategies played
by the opponent. This simple idea (which was shown to lead to optimal solutions in
the limit in various cases) led to many subfields of economics, including Arrow-Debreu
General Equilibrium theory and more recently, evolutionary game theory. Grigoriadis
and Khachiyan [49] showed how a randomized variant of “Fictitious Play” can solve two
player zero-sum games efficiently. This algorithm is precisely the multiplicative weights
algorithm. It can be viewed as a soft version of fictitious play, when the player gives
higher weight to the strategies which pay off better, and chooses her strategy using these
weights rather than choosing the myopic best response strategy.

In Machine Learning, the earliest form of the multiplicative weights update rule was
used by Littlestone in his well-known Winnow algorithm [76, 77]. This algorithm was
generalized by Littlestone and Warmuth [78] in the form of the Weighted Majority algo-
rithm.

The multiplicative update rule (and the exponential potential function) was also dis-
covered in Computational Geometry in the late 1980s [34] and several applications in
geometry are described in Chazelle [33] (p. 6, and p. 124).

The weighted majority algorithm as well as more sophisticated versions have been inde-
pendently discovered in operations research and statistical decision making in the context
of the On-line decision problem; see the surveys of Cover [37], Foster and Vohra [41], and
also Blum [23] who includes applications of weighted majority to machine learning. A no-
table algorithm, which is different from but related to our framework, was developed by
Hannan in the fifties [52]. Kalai and Vempala showed how to derive efficient algorithms
via similar methods [59].

Within computer science, several researchers have previously noted the close relation-
ships between multiplicative update algorithms used in different contexts. Young [103]
notes the connection between fast LP algorithms and Raghavan’s method of pessimistic
estimators for derandomization of randomized rounding algorithms. Klivans and Serve-
dio [70] relate boosting algorithms in learning theory to proofs of Yao’s XOR Lemma.
Garg and Khandekar describe a common framework for convex optimization problems
that contains Garg-Könemann [44] and Plotkin-Shmoys-Tardos [85] as subcases.

In the survey paper [15], we use the framework developed in this chapter to unify
previously known applications of the Multiplicative Weights method. In the same paper,
we also give lower bounds (inspired by the work of Klein and Young [69]) that show that
the analysis of the Multiplicative Weights algorithm is tight in the various parameters
involved.

20

