CSE 521: Design and Analysis of Algorithms I

Representative Problems

Paul Beame
5 Representative Problems

- **Interval Scheduling**
 - Single resource
 - Reservation requests
 - Of form “Can I reserve it from start time s to finish time f?”
 - $s < f$
 - **Find:** maximum number of requests that can be scheduled so that no two reservations have the resource at the same time
Interval Scheduling

- Input. Set of jobs with start times and finish times.
- Goal. Find maximum cardinality subset of mutually compatible jobs.

jobs don't overlap
Interval scheduling

Formally

- Requests 1, 2, ..., n
 - request i has start time s_i and finish time $f_i > s_i$
- Requests i and j are compatible iff either
 - request i is for a time entirely before request j
 - $f_i \leq s_j$
 - or, request j is for a time entirely before request i
 - $f_j \leq s_i$
- Set A of requests is compatible iff every pair of requests $i, j \in A, i \neq j$ is compatible
- Goal: Find maximum size subset A of compatible requests
Interval Scheduling

- We shall see that an optimal solution can be found using a “greedy algorithm”
 - Myopic kind of algorithm that seems to have no look-ahead

- These algorithms only work when the problem has a special kind of structure

- When they do work they are typically very efficient
Weighted Interval Scheduling

- Same problem as interval scheduling except that each request \(i \) also has an associated value or weight \(w_i \)
 - \(w_i \) might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used

- **Goal**: Find compatible subset \(A \) of requests with maximum total weight
Weighted Interval Scheduling

- **Input.** Set of jobs with start times, finish times, and weights.
- **Goal.** Find maximum weight subset of mutually compatible jobs.
Weighted Interval Scheduling

- Ordinary interval scheduling is a special case of this problem
 - Take all \(w_i = 1 \)
- Problem is quite different though
 - E.g. one weight might dwarf all others
 - “Greedy algorithms” don’t work

- **Solution:** “Dynamic Programming”
 - builds up optimal solutions from smaller problems using a compact table to store them
Bipartite Matching

- A graph $G=(V,E)$ is bipartite iff
 - V consists of two disjoint pieces X and Y such that every edge e in E is of the form (x,y) where $x \in X$ and $y \in Y$
 - Similar to stable matching situation but in that case all possible edges were present

- $M \subseteq E$ is a matching in G iff no two edges in M share a vertex
- **Goal:** Find a matching M in G of maximum possible size
Bipartite Matching

- Input. Bipartite graph.
- Goal. Find maximum cardinality matching.
Bipartite Matching

- Models assignment problems
 - X represents jobs, Y represents machines
 - X represents professors, Y represents courses
- If $|X| = |Y| = n$
 - G has perfect matching iff maximum matching has size n
- **Solution**: polynomial-time algorithm using “augmentation” technique
 - also used for solving more general class of network flow problems
Independent Set

- Given a graph $G=(V,E)$
 - A set $I \subseteq V$ is independent iff no two nodes in I are joined by an edge
- **Goal**: Find an independent subset I in G of maximum possible size
- Models conflicts and mutual exclusion
Independent Set

- Input. Graph.
- Goal. Find maximum cardinality independent set.
Independent Set

- Generalizes
 - Interval Scheduling
 - Vertices in the graph are the requests
 - Vertices are joined by an edge if they are not compatible
 - Bipartite Matching
 - Given bipartite graph $G = (V, E)$ create new graph $G' = (V', E')$ where
 - $V' = E$
 - Two elements of V' (which are edges in G) are joined if they share an endpoint in G
Bipartite Matching vs Independent Set

\[G = (U \cup V, E) \]

\[G' = (V', E') \]
Independent Set

- No polynomial-time algorithm is known
 - But to convince someone that there was a large independent set all you’d need to do is show it to them
 - they can easily convince themselves that the set is large enough and independent
 - Convincing someone that there isn’t one seems much harder
- We will show that Independent Set is NP-complete
 - Class of all the hardest problems that have the property above
Competitive Facility Location

- Two players competing for market share in a geographic area
 - e.g. McDonald’s, Burger King
- Rules:
 - Region is divided into n zones, $1,\ldots,n$
 - Each zone i has a value b_i
 - Revenue derived from opening franchise in that zone
 - No adjacent zones may contain a franchise
 - i.e., zoning regulations limit density
 - Players alternate opening franchises
- Find: Given a target total value B is there a strategy for the second player that always achieves $\geq B$?
Competitive Facility Location

- Model geography by
 - A graph $G=(V,E)$ where
 - V is the set $\{1,\ldots,n\}$ of zones
 - E is the set of pairs (i,j) such that i and j are adjacent zones

- Observe:
 - The set of zones with franchises will form an independent set in G
Competitive Facility Location

Target $B = 20$ achievable?

What about $B = 25$?
Checking that a strategy is good seems hard
- You’d have to worry about all possible responses at each round!
 - a giant search tree of possibilities
- Problem is PSPACE-complete
 - Likely strictly harder than \(\text{NP-complete} \) problems
 - PSPACE-complete problems include
 - Game-playing problems such as \(n \times n \) chess and checkers
 - Logic problems such as whether quantified boolean expressions are always true
 - Verification problems for finite automata
Five Representative Problems

- Variations on a theme: independent set.
- Interval scheduling: $n \log n$ greedy algorithm.
- Weighted interval scheduling: $n \log n$ dynamic programming algorithm.
- Bipartite matching: n^k max-flow based algorithm.
- Independent set: NP-complete.
- Competitive facility location: PSPACE-complete.