CSE 521: Design and Analysis of Algorithms I

Randomized Algorithms: Primality Testing

Paul Beame
Randomized Algorithms

- **QuickSelect and Quicksort**
 - Algorithms’ random choices make them fast and simple but don’t affect correctness
 - Not only flavor of algorithmic use of randomness

- **Def:** A randomized algorithm A computes a function f with error at most ε iff
 - For every input x the probability over the random choices of A that A outputs $f(x)$ on input x is $\geq 1 - \varepsilon$

- Error at most 2^{-100} is practically just as good as 0
 - Chance of fault in hardware is larger
Primality Testing

- Given an \(n \)-bit integer \(N \) determine whether or not \(N \) is prime.

- Obvious algorithm: Try to factor \(N \)
 - Try all divisors up to \(N^{1/2} \leq 2^{n/2} \).
 - Best factoring algorithms run in \(\geq 2^{n^{1/3}} \) time

- Rabin-Miller randomized algorithm
 - If \(N \) is prime always outputs “prime”
 - If \(N \) is composite
 - outputs “composite” with probability \(1-2^{-2t} \)
 - outputs “prime” with probability \(2^{-2t} \)
 - Much less efficient, though.
Rabin-Miller Algorithm

- If N is even then output “prime” if $N=2$ and “composite” otherwise and then halt
- Compute k and d such that $N-1=2^kd$ where d is odd
- For $j=1$ to t do
 - Choose random a from $\{1,\ldots,N-1\}$
 - Compute $b_0=a^d \mod N$ using powering by repeated squaring
 - For $i=1$ to k do
 - Compute $b_i=b_{i-1}^2 \mod N = a^{2^id} \mod N$
 - If $b_i=1$ and $b_{i-1} \neq \pm 1$ output “composite” and halt
 - If $b_k= a^{N-1} \mod N \neq 1$ output “composite” and halt
 - Output “prime”

- Running time: $O(tn)$ multiplications $\mod N$
Rabin-Miller analysis

- We will prove slightly weaker bound:
 - If N is prime always outputs “prime”
 - If N is composite
 - outputs “composite” with probability $1-2^{-t}$
 - outputs “prime” with probability 2^{-t}

- Whenever output is “composite” N is composite:
 - Fermat’s Little Theorem: If N is prime and a is in \{1,\ldots,N-1\} then $a^{N-1}\mod N = 1$
 - So $a^{N-1}\mod N \neq 1$ implies N is composite
 - If $b_i=b_{i-1}^2\mod N=1$ then N divides $(b_{i-1}^2-1)=(b_{i-1}-1)(b_{i-1}+1)$
 - So if N is prime then N divides $(b_{i-1}-1)$ or $(b_{i-1}+1)$ and thus $b_{i-1}= b_{i-1}\mod N = \pm 1$
 - So $b_i=1$ and $b_{i-1}\neq \pm 1$ implies N is composite
Some observations

- Let m be any integer > 0
- If $\gcd(a, N) > 1$ for $0 < a < N$ then N is composite but also $\gcd(a^m, N) > 1$ so $a^m \mod N \neq 1$
 - Algorithm will test $m = N-1$ and output “composite”
- Write $\mathbb{Z}_N^* = \{a \mid 0 < a < N \text{ and } \gcd(a, N) = 1\}$
 - Euclid’s algorithm shows that every b in \mathbb{Z}_N^* has an inverse b^{-1} in \mathbb{Z}_N^* such that $b^{-1} b \mod N = 1$
- Let $G_m = \{a \text{ in } \mathbb{Z}_N^* \mid a^m \mod N = 1\}$
- **Claim:** If there is a b in \mathbb{Z}_N^* but not in G_m then $|G_m| \leq |\mathbb{Z}_N^*|/2$.
Some observations

- $\mathbb{Z}_N^* = \{a \mid 0 < a < N \text{ and } \gcd(a, N) = 1\}$
- Let $G_m = \{a \in \mathbb{Z}_N^* \mid a^m \mod N = 1\}$
- **Claim:** If there is a b in \mathbb{Z}_N^* but not in G_m then $|G_m| \leq |\mathbb{Z}_N^*|/2$.
 - Consider $H_m = \{ba \mod N \mid a \in G_m\} \subseteq \mathbb{Z}_N^*$.
 - Then $|H_m| = |G_m|$ since $ba_1 = ba_2 \mod N$ implies $a_1 = a_2 \mod N$
 - Also for c in H_m, $c = ba \mod N$ for some a in G_m.

so $c^m \mod N = (ba)^m \mod N$

$$= b^m a^m \mod N = b^m \mod N \neq 1.$$
So… if there is even one \(a \) such that \(a^{N-1} \mod N \neq 1 \) then \(N \) is composite and at least half the possible \(a \) also satisfy this and the algorithm will output “composite” with probability \(\geq \frac{1}{2} \) on each time through the loop

- Chance of failure over \(t \) iterations \(\leq 2^{-t} \).

Odd composite numbers (e.g. \(N=361 \)) that have \(a^{N-1} \mod N=1 \) for all \(a \) in \(\mathbb{Z}_N^* \) are called Carmichael numbers

Fact: Carmichael numbers are not powers of primes

- Only need to consider the case of \(N=q_1q_2 \) where \(\gcd(q_1,q_2)=1 \)
Rabin-Miller analysis

- Need the other part of the Rabin-Miller test
 - If \(b_i = a^{2^i} \mod N = 1 \) and \(b_{i-1} = a^{2^{i-1}} \mod N \neq \pm 1 \)
 output “composite”

- Chinese Remainder Theorem:
 - If \(N = q_1 \cdot q_2 \) where \(\gcd(q_1, q_2) = 1 \) then for every \(r_1, r_2 \) with \(0 \leq r_i \leq q_i - 1 \) there is a unique integer \(M \) in \(\{0, \ldots, N-1\} \) such that \(M \mod q_i = r_i \) for \(i = 1, 2 \).
 (One-to-one correspondence between integers \(M \) and pairs \(r_1, r_2 \))
 - \(M = 1 \leftrightarrow (1, 1), \ M = -1 = N - 1 \leftrightarrow (q_1 - 1, q_2 - 1) = (-1, -1) \)
 - Other values of \(M \) such that \(M^2 \mod N = 1 \)
 correspond to pairs \((1, -1)\) and \((-1, 1)\)
Consider the largest \(i \) such that there is some \(a_1 \) in \(\mathbb{Z}_N^* \) with \(a_1^{2^i-1}d \mod N = -1 \) and let \(r_i = a_1 \mod q_i \).

Since \(a_1 \neq 1 \), \((r_1, r_2) \neq (1, 1)\). Assume wlog \(r_1 \neq 1 \).

Let \(G = \{ a \in \mathbb{Z}_N^* \mid a^{2^i-1}d \mod N = \pm 1 \} \).

By Chinese Remainder Theorem consider \(b \) in \(\mathbb{Z}_N^* \) corresponding to the pair \((r_1, 1)\).

- Then \(b^{2^id} \mod q_1 = 1 \) and \(b^{2^id} \mod q_2 = 1 \) so \(b^{2^id} \mod N = 1 \).
- But \(b^{2^i-1}d \mod q_1 = -1 \) and \(b^{2^i-1}d \mod q_2 = 1 \) so \(b^{2^i-1}d \mod N \neq \pm 1 \).

By similar reasoning as before every element of
\(H = \{ ba \mid a \in G \} \) is in \(\mathbb{Z}_N^* \) but not in \(G \) so \(|G| \leq |\mathbb{Z}_N^*|/2 \) and the algorithm will choose an element not in \(G \) with probability \(\geq \frac{1}{2} \) per iteration and output “composite” with probability \(\geq 1 - 2^{-t} \) overall.
Relationship to Factoring

- In the second case the algorithm finds an x such that $x^2 \mod N = 1$ but $x \mod N \neq \pm 1$
 - Then N divides $(x^2-1) = (x+1)(x-1)$ but N does not divide $(x+1)$ or $(x-1)$
 - Therefore N has a non-trivial common factor with both $x+1$ and $x-1$
 - Can partially factor N by computing $\gcd(x-1,N)$
- Finding pairs x and y such that $x^2 \mod N = y^2$ but $x \neq \pm y$ is the key to most practical algorithms for factoring (e.g. Quadratic Sieve)
Basic RSA Application

- Choose two random \(n \)-bit primes \(p, q \)
 - Repeatedly choose \(n \)-bit odd numbers and check whether they are prime
 - The probability that an \(n \)-bit number is prime is \(\Omega(1/n) \) by the Prime Number Theorem so only \(O(n) \) trials required on average

- Public Key is \(N=pq \) and random \(e \) in \(Z_N^* \)
 - Encoding message \(m \) is \(m^e \mod N \)

- Secret Key is \((p,q)\) which allows one to compute \(\varphi(N)=N-p-q+1 \) and \(d=e^{-1}\mod \varphi(N) \)
 - Decryption of ciphertext \(c \) is \(c^d \mod N \)

- Note: Some implementations (e.g. PGP) don’t do full Rabin-Miller test