CSE 521: Design & Analysis of Algorithms I

Some Useful Hashing Data Structures

Paul Beame
Some Random Data Structure Ideas

- Bloom Filters
 - Quick certification of non-membership in a set

- The power of two random choices
 - Better load balancing

- Cuckoo hashing
 - Using two choices and data movement for a simple efficient dynamic dictionary data structure
Bloom Filters

- Given a set $S = \{x_1, x_2, x_3, \ldots, x_n\}$ on a universe U, want to answer queries of the form:

 $\text{Is } y \in S$?

- Bloom filter provides an answer in
 - “Constant” time (to hash).
 - Small amount of space.
 - But with small probability of a false positive
 - Useful when the answer is usually NO
Exact Computation based on
Universal Hash Function Families

- Family of functions \mathcal{H}
 - Each $H \in \mathcal{H}$ satisfies $H : U \rightarrow \{0, \ldots, m-1\}$
 - Assume that H is chosen from \mathcal{H} at random independent of the elements of S

- Universal Hash Function Family
 - For any $x \neq y \in U$, $\Pr_{H \in \mathcal{H}}[H(x) = H(y)] = 1/m$

- Example Universal Family: \mathcal{H}
 - $U = \{0, \ldots, 2^N-1\}$, $m = 2^M$
 - each function specified by pair (a, b) where a is an $(M+N)$-bit integer and $b \in \{0, \ldots, m-1\}$
 - $H_{(a,b)}(x) =$ middle M bits of $ax + b$ (which is $M+2N$ bits long)
Exact Computation based on Universal Hash Function Families

- Hash the elements of U
- Collisions:
 - Open hashing
 - Place them nearby in the table
 - Separate chaining
 - Extra pointers to follow
 - Double hashing
 - Additional hash table for set of elements that within each table entry
 - Can be made into a perfect hash function with low failure probability but is complex
Bloom Filters

Start with an \(m \) bit array, filled with 0s.

Hash each item \(x_j \) in \(S \) \(k \) times. If \(H_i(x_j) = a \), set \(B[a] = 1 \).

To check if \(y \) is in \(S \), check \(B \) at \(H_i(y) \). All \(k \) values must be 1.

Possible to have false positive; all \(k \) values are 1, but \(y \) is not in \(S \).

\[
\begin{align*}
B & \quad 0 \\
& \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \\
& \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \\
& \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0
\end{align*}
\]

\(n \) items \quad \quad m = cn \text{ bits} \quad \quad k \text{ hash functions}
Truly Random Hash Functions

Instead of using hash function families indexed by a small set like the set of \((a,b)\) pairs let \(H\) be the set of all possible functions from \(U\) to \(\{0,\ldots,m-1\}\)

Then for any set of \(s\) distinct elements \(x_1,\ldots,x_s\) of \(U\):

\[
\Pr_{H \in \mathcal{H}} [H(x_1)=a_1,\ldots,H(x_s)=a_s] = 1/m^s
\]

Universal families don’t achieve this for large \(s\)

- In reality analysis is approximate since we don’t use truly random functions
- Effectiveness in practice relies on data not being adversarial
False Positive Probability

- \(\Pr(\text{specific bit of filter is 0}) \) is
 \[p' \equiv (1-1/m)^{kn} \approx e^{-kn/m} \equiv p \quad (p' \leq p) \]
- If \(\beta \) is fraction of 0 bits in the filter then false positive probability for a new element is
 \[(1- \beta)^k \approx (1- p')^k \approx (1- p')^k = (1-e^{-kn/m})^k \]
- Approximations are almost exact since \(\beta \) is concentrated around \(E[\beta] \).
- Find optimal at \(k = (\ln 2) \frac{m}{n} \) by calculus.
 - So optimal false positive prob is about \((0.6185)^{m/n} \)

- \(n \) items \quad \(m = cn \) bits \quad \(k \) hash functions
Graph of \((1-e^{-k/c})^k\) for \(c=8\)

\[
m/n = 8
\]

Opt \(k = 8 \ln 2 = 5.45\ldots\)

\[
\begin{align*}
\text{n items} & \quad m = cn \text{ bits} & \quad k \text{ hash functions}
\end{align*}
\]
Application Example

- Google **BigTable** uses Bloom filters to reduce the disk lookups for non-existent rows or columns.
 - Avoiding costly disk lookups considerably increases the performance of a database query operation.
Handling Deletions

- Bloom filters can handle insertions, but not deletions.

- If deleting x_i means resetting 1’s to 0’s, then deleting x_i will “delete” x_j.
Counting Bloom Filters

Start with an m bit array, filled with 0s.

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Hash each item x_j in S_k times. If $H_i(x_j) = a$, add 1 to $B[a]$.

| 0 | 3 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 2 | 1 | 0 | 2 | 1 | 0 |

To delete x_j decrement the corresponding counters.

| 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 2 | 1 | 0 | 1 | 1 | 0 |

Can obtain a corresponding Bloom filter by reducing to 0/1.

| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
Counting Bloom Filters: Overflow

- Must choose counters large enough to avoid overflow
 - e.g. for $c=8$ choose 4 bits per counter
 - Average load using $k = (\ln 2) \frac{m}{n}$ counters is $\ln 2$.
 - Probability a counter has load at least 16 is $e^{-\ln 2} (\ln 2)^{16}/16!$ which is roughly 6.78×10^{-17}
Bloom filter variety

- There are alternative ways to design Bloom filter style data structures that are more effective for some variations, applications
Random Load Balancing

- Assigning tasks to servers
 - Distributed/parallel environment
 - No central control
 - Tasks generated by processes anywhere
 - Indistinguishable
 - Goal: Assign tasks to servers in constant time keeping load balanced

- Simple approach
 - assign each task to a random server

- Case for analysis
 - \(n \) servers
 - \(n \) tasks (average load 1)
Random Load Balancing: Tossing Balls into Bins

- Tasks \(\equiv\) balls, servers \(\equiv\) bins
- \(\Pr[\text{ball } i \text{ in bin } j] = 1/n\)
- \(\Pr[\geq k \text{ balls in bin } j] \leq (\text{n choose k}) n^{-k} \leq (n^k/k!) n^{-k} = 1/k! \approx 1/k^{\Theta(k)}\)
- \(\Pr[\exists \text{ bin with } \geq k \text{ balls}] \leq n/k^{\Theta(k)}\)
- In order for this to be small we need \(k = \Omega(\log n/\log\log n)\)
- Imbalance:
 - Some bin will have \(\Omega(\log n/\log\log n)\) balls
Random Load Balancing: The Power of Two Choices

- Extra assumption:
 - Process can detect current load of server prior to assignment

- Power of two choices algorithm: [Azar-Broder-Karlin-Upfal]
 - For each task/ball choose 2 servers/bins uniformly at random
 - Assign task/ball to less loaded server/bin
 - More generally: make d random choices and assign to least loaded bin
Random Load Balancing: The Power of Two Choices

- **Theorem [ABKU]** With 2 random choices and assignment to the least loaded bin the no bin contains more than $\log \log n + O(1)$ balls almost certainly
 - With d choices the load goes down to $\log \log n / \log d + O(1)$

- **Proof idea:**
 - For $i=0,1,...$ let β_i be the fraction of bins with load at least i.
Imagine assigning the balls sequentially

- Let $\beta_i(t) = \beta_i$ denote the fraction of bins with load at least i after t balls
- $\beta_0(t) = 1$
- Clearly β_2 is $\leq \frac{1}{2}$ since there only n balls
- For $t+1^{st}$ ball to create a bin with load $\geq i+1 \geq 3$, all of its d bin choices must have load $\geq i$.
 - Probability is at most $[\beta_i(t)]^d \leq \beta_i^d$
- Associate each bin of load $\geq i+1$ with the ball inserted that created that load
- Expected total # of bins contributing to β_{i+1} is $\leq n \beta_i^d$
- Roughly implies that $\beta_{i+1} \leq \beta_i^d$
Power of 2 choices rough analysis

- Since $\beta_2 \leq \frac{1}{2}$ and $\beta_{i+1} \leq \beta_i^d$ we have $\beta_k \leq \left(\frac{1}{2}\right)^{d^{k-2}}$

- Now the expected # of bins of load $\geq k$ is $n \beta_k \leq n \left(\frac{1}{2}\right)^{d^{k-2}}$

- This is less than 1 when $n \left(\frac{1}{2}\right)^{d^{k-2}} \leq 1$ i.e. when $\log n \leq d^{k-2}$, that is when $\log \log n \leq (k-2) \log d$

- equivalently when $k \geq \log \log n / \log d + 2$

- This is just expected size but can show that with a small change in constant this holds with high probability, though proof is tricky
Extension: \textit{d}-left Hashing

\begin{itemize}
 \item Split hash table into \textit{d} equal subtables.
 \item To insert, choose a bucket uniformly for each subtable.
 \item Place item in a cell in the least loaded bucket, breaking ties to the left.
\end{itemize}
Property of d-left Hashing

[Vocking] Having d-separate tables of size n/d and tiebreaking to the left as in random d-left hashing is at least as good as independent choices.

- Almost surely the most loaded bin has load at most $\log \log n/(d\Phi_d) + O(1)$ where $\Phi_d \leq 2$
Cuckoo Hashing

- Simple dynamic perfect hashing using power of 2 choices
 - Use 2 random hash functions \(h_0\) and \(h_1\) to 2 tables of size \((1+\varepsilon)n\)
 - To insert \(x\)
 - If bin \(h_0(x)\) is full then check \(h_1(x)\).
 - If both full then bin \(h_0(x)\) contains some \(y\) with \(h_0(y)=h_0(x)\) so set \(b=1\) and repeat:
 - kick \(y\) out of its nest (as cuckoos do) and insert it in its unique alternative place \(h_b(y)\), kicking out whatever \(z\) is already there
 - \(y \leftarrow z; \quad b \leftarrow 1 - b\)
 - It is possible that a cycle is created. To handle this add a max # of iterations through the loop and then rebuild the table using new random hash functions