CSE 521: Design &

| Analysis of Algorithms |

Network Flow

Paul Beame

i Bipartite Matching

= Glven: A bipartite graph G=(V,E)

= MIUOE Is a matching in G iff no two edges
In M share a vertex

= Goal: Find a matching M in G of
maximum possible size

i Bipartite Matching

i Bipartite Matching

i The Network Flow Problem

= How much stuff can flow from s to t?

Bipartite matching as a special case

ﬁ of flow

i Net Flow: Formal Definition

Given: Find:
Adigraph G = (V,E) A flow function f: E - R s.t., for all
Two verticess,tinv WV.

(source & sink) = 0 <f(u,v) <c(u,v)
A Capacity C(U ,V) >0 [Capacity Constraint]
for each (U,V) (T E « Ifu# S, 1, l.e. fOUt(U):f in(U)

(and c(u,v) = 0 for all [Flow Conservation]

_ed , L
non-edges (u,v)) Maximizing total flow v(f) = fout(s)

Notation:

" (V) - Z v)EEf(u V) Fer (V) = Ze=(v,w)[Ef(V’W)

ﬁ Example: A Flow Function

flow/capacity, not .66...

—22 G238 D)
fin(u)=f(s,u)=2=f(u,t)=fout (u)

i Example: A Flow Function

= Not shown: f(u,v) If =0

= Note: max flow =4 since
f Is a flow function, with v(f) = 4

i Max Flow via a Greedy Alg?

While thereisan s - t pathin G
Pick such a path, p
Find c, the min capacity of any edge in p
Subtract ¢ from all capacities on p
Delete edges of capacity O

= This does NOT always find a max flow:

1 Aa)y—2 If picks -b —a -t
6 /3 ()

first, flow stuck at 2.
2 (b)) 1 But flow 3 possible.

10

A Brief History of Flow

| year | discoverer(s) bound
1| 1951 | Dantzig O(n*mU)
2 | 1955 | Ford & Fulkerson O(nmU)
3 | 1970 | Dinitz O(nm?)
Edmonds & Karp
4 1970 | Dinitz O(mZm)
5 | 1972 | Edmonds & Karp O(m?logU)
Dinitz
6 | 1973 | Dinitz O(nmlogU)
Gabow
7 | 1974 | Karzanov O(n?)
8 | 1977 | Cherkassky O(n?*\/m)
9 | 1980 | Galil & Naamad O(nmlog” n)
10 | 1983 | Sleator & Tarjan O(nmlogn)
11 | 1986 | Goldberg & Tarjan O(nmlog(n?/m))
12 | 1987 | Ahuja & Orlin O(nm + n?logU)
13 | 1987 | Ahuja et al. O(nmlog(ny/logU/(m + 2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n?log® n)
15 | 1990 | Cheriyan et al. O(n°/logn)
16 | 1990 | Alon O(nm + n8/3logn)
17 | 1992 | King et al. O(nm + n**¢)
18 | 1993 | Phillips & Westbrook | O(nm(log,,, /., n + log"" “ n))
19 | 1994 | King et al. O(nmlog,, /(niogn) ™)
20 | 1997 | Goldberg & Rao O(m3/? log(n?/m) log U)
O(n?/3mlog(n?/m)logU)

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg & Rao,
FOCS 97

11

Greed Revisited:
i Residual Graph & Augmenting Path

12

Greed Revisited:
i An Augmenting Path

New Residual Graph

13

i Residual Capacity

= The residual capacity (w.r.t. f) of (u,v) IS
c.(u,v) =c(u,v) - f(u,v) if f(u,v)<c(u,v)
and cq(u,v)=f(v,u) if f(v,u)>0

= €.0. C«(S,b)=7; c(a,x) =1, cix,a) =3

14

Residual Graph
i & Augmenting Paths

= The residual graph (w.r.t. f) Is the graph
G = (V,Ef), where
Ei={(V)|ciuv)>0}
= Two kinds of edges
= Forward edges
=« f(u,v)<c(u,v) so cq(u,v)=c(u,v)-f(u,v)>0
« Backward edges
» f(U,v)>0 so c(v,u) = -f(v,u)=f(u,v)>0
= An augmenting path (w.r.t. f) is a simple
S — t path in G;.

15

i A Residual Network

3
a S
4,1 3
1 2
7 (p) 2 /\7@
6

16

i An Augmenting Path

17

i Augmenting A Flow

augment(f,P)

Cp—Ming yop C(U,V) “bottleneck(P)”

for each elP
If e iIs a forward edge then
iIncrease f(e) by ¢,
else (e is a backward edge)
decrease f(e) by ¢,
endif
endfor
return(f)

18

i Augmenting A Flow

i Claim 7.1

If G; has an augmenting path P, then the
function f=augment(f,P) is a legal flow.

Proof:

= " and f differ only on the edges of P so
only need to consider such edges (u,v)

20

i Proof of Claim 7.1

= If (u,v) Is a forward edge then
f'(u,v)=f(u,v)+cp, < f(u,v)+c.(u,v)
= f(u,v)+c(u,v)-f(u,v)
=c(u,v)
= If (u,v) Is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f (v,u)=f(v,u)-c, = f(v,u)-c.(u,v)
= f(v,u)-f(v,u)=0
= Other conditions like flow conservation
still met

21

i Ford-Fulkerson Method

Start with f=0 for every edge

While G; has an augmenting path,
augment

= Questions:
= Does it halt?
= Does it find a maximum flow?
= How fast?

22

Observations about Ford-Fulkerson

i Algorithm

= At every stage the capacities and flow values
are always integers (if they start that way)

= The flow value v(f")=v(f)+c>v(f) for
f =augment(f,P)

= Since edges of residual capacity O do not appear
In the residual graph

= Let C=2 , e C(S,u)
. v(f)<C

= F-F does at most C rounds of augmentation since

flows are integers and increase by at least 1 per
step

23

i Running Time of Ford-Fulkerson

= For f=0, G=G

= Finding an augmenting path in G; Is
graph search O(n+m)=0(m) time

= Augmenting and updating G; is O(n)
time

= Total O(mMC) time

s Does Is find a maximum flow?

= Need to show that for every flow f that isn’t
maximum G; contains an s-t-path

24

i Cuts

= A partition (A,B) of V Is an s-t-cut If

s SLIA, tLIB

= Capacity of cut (A,B) is c(A,B) = c(u,v)
ulLIA

ﬁ Convenient Definition

= FU(A)=2,0p wioa T (VW)

= fM(A)=2,0 yoa T (U,V)

26

i Claims 7.6 and 7.8

= For any flow f and any cut (A,B),

= the net flow across the cut equals the total
flow, i.e., v(f) = fout(A)-fin(A), and
= the net flow across the cut cannot exceed

the capacity of the cut,
l.e. fout(A)-fn(A) < c(A,B)

= Corollary : | . o =3
Max flow < Min cut . Net Flow = 1
CutCap =2

Net Flow =1
27

Proof of Claim 7.6

|

Consider a set A with sUA, tLA

fout(A)-fin(A) :szZIA, woa | (V’W)'szA, uoa T (U,V)
We can add flow values for edges with both
endpoints in A to both sums and they would cancel

out so
fout(A)-fn(A)= szA, wov T (V’W)'szA, aov T(U,V)
- szA (ZWEIV f(v,w) - Zu|]v f(u,v))

=20 fout (v) - fin(v)
—fout (S)_fln (S)

since all other vertices have fout(v)=fin(v)

= V(f) = fout(s) and fin(s)=0

28

i Proof of Claim 7.8

= V(f)=fout(A)-fin(A)
< fout(A)

= ZVDA, w A f (V’W)
- ZvEIA, w LA C(V1W)

- ZvEIA, wlB C(V1W)
=c(A,B)

29

i Max Flow / Min Cut Theorem

Claim 7.9 For any flow f, if G; has no
augmenting path then there is some s-t-cut
(A,B) such that v(f)=c(A,B) (proof on next slide)

= We know by Claims 7.6 & 7.8 that any flow f’ satisfies
v(f') < c(A,B) and we know that F-F runs for finite
time until it finds a flow f satisfying conditions of
Claim 7.9

= Therefore by 7.9 for any flow ', v(f’') <v(f)

= Corollary (1) F-F computes a maximum flow in G

(2) For any graph G, the value v(f) of a maximum
flow = minimum capacity c(A,B) of any s-t-cut in G

30

i Claim 7.9

Let A={u | Uan pathin G; froms tou }
B=V-A; sUOA,t0OB
saturated

f(u,v)=c(u,v)

no flow
f(w,u)=0

This is true for every edge crossing the cut, I.e.
fOU (A) = Zf(u V) Zc G,v)= AB) and fin(A)=0 so
v(f)=fout(A)-fin(A)=c(A,B)

VEB VEB

31

i Flow Integrality Theorem

If all capacities are integers
= The max flow has an integer value

= Ford-Fulkerson method finds a max flow Iin
which f(u,v) is an integer for all edges (u,v)

32

i Corollaries & Facts

= If Ford-Fulkerson terminates, then it’s
found a max flow.

= It will terminate If c(e) integer or rational
(but may not if they’re irrational).

= However, may take exponential time,
even with integer capacities:

e 1 t c = 109, say

33

Bipartite matching as a special case

i of flow

Integer flows implies each flow Is just a subset of the edges
Therefore flow corresponds to a matching

O(MmC)=0(nm) running time

34

Conseqguences of Ford-Fulkerson:

i Hall's Theorem

= Def: For a graph

G=(V,E) and ALIV let

the neighborhood of A be

M(A)={wOV
A}

s Hall's Theorem:
pipartition V=X

(v,w)LIE for some v

A graph G=(V,E) with
Y where |X|=|Y| has a

nerfect matching if and only If for every

set ALIX we have [['(A)|2]|Al.

35

— Dranf- —~+ ¥ IF/ANNI~-INI| fAYy eArmn et N

i Hall's Theorem Proof: Part 1
A

a

['(A)

b W

IF(A)l

S C X t

XI-|A 7

Min cut < | X]|-|A]+|T(A)|< [X]
SO0 matching is not perfect

36

i Hall's Theorem Proof: Part 2

If no perfect matching there is some st-cut (A’,B) with cut
value < [X|
e Let A=part of A’ in X

37

i Hall's Theorem Proof: Part 2

* Modify A’ to include all vertices in I'(A)
 Value of mincut cannot go up so still < [X|
o # of edges from s cut is | X]|-|A|

o # of edgestot cutis = |r(A)
e Total is = [X|-|A[+|(A)| but <|X]| so [(A)|<|A]

38

Conseqguences of Ford-Fulkerson:
i Edge-disjoint paths

= Given a directed graph G=(V,E) and
vertices s and t find a maximum set of
edge-disjoint (simple) paths from s to t.

= Lemma: Any 0-1 flow f in the network
flow graph on G=(V,E), s, t with all
capacities=1 contains a set of v(f) edge-
disjoint simple paths from s to t.

= Proof. Follow the edges of positive flow
through the graph. Flow conservation

Edge-disjoint paths in directed

i graphs

= Since a collection of k edge-disjoint paths is

alway

s a legal 0-1 flow of value k, by

Maxflow=Mincut we have:

= Directed Menger’'s Theorem: The maximum

num

ner of edge-disjoint paths from s to t Is

equal to the minimum number of edges that

neec

to be cut to separate s from t.

= We can use Ford-Fulkerson to find the flow Iin
O(mn) time (since capacities are all 1) and

then

prune the flow as on previous slide In

O(m+n) extra time.

40

4

Edge-disjoint paths in undirected
graphs

Given an undirected graph G=(V,E) and nodes s and
t, we can modify G to create a directed graph
G'=(V,E’) where we include both (u,v) and (v,u) in E’
whenever {u,v}isin E.

Observation: If in a flow f we have f(v,u)=f(u,v) >0
then we can set f(v,u)=f(u,v)=0 and keep the same
flow value

Algorithm: Run F-F on G’ in O(mn) time and then
remove flow cycles in O(m+n) time.

Undirected Menger’'s Theorem: The maximum
number of edge-disjoint paths from s to t is equal to
the minimum number of edges that need to be cut to
separate s from t.

41

i Polynomial running time?

= F-F uses O(mC) time where C Is the
total capacity leaving s.

= If all capacities are at most some upper
bound U then C < nU but each input
capacity takes only log ,U bits to represent
so the running time is not polynomial in the

Input size
= We will give two modifications that yield
polynomial-time algorithms for general
network flow problems

42

i Capacity-scaling algorithm

= General idea:
= Choose augmenting paths P with ‘large’
capacity cp
= Can augment flows along a path P by any
amount b<c,
= Ford-Fulkerson still works

= Get a flow that is maximum for the high-
order bits first and then add more bits later

43

i Capacity Scaling

44

i Capacity Scaling

45

i Capacity Scaling Bit 1

Capacity on each edge is at most 1
(either O or 1 times A=4)

46

i Capacity Scaling Bit 1

O(nm) time

47

i Capacity Scaling Bit 2

10

10

10/11] -~ 10/10

10/11

Residual capacity across min cut is at most m
(either O or 1 times A=2)

48

Capacity Scaling Bit 2

01/10

10/10

10/11] -~ 10/10
10/11

Residual capacity across min cut is at most m

= < m augmentations

49

Capacity Scaling Bit 3

010/100

100/101

Residual capacity across min cut is at most m
(either O or 1 times A=1)

50

Capacity Scaling Bit

010/100

3

101/101

010/011

—~11/111
%

101/101

©)

After < m augmentations

6

51

i Capacity Scaling Final

52

i Capacity Scaling Min Cut

53

|

Total time for capacity scaling

log, U rounds where U Is largest capacity

At most m augmentations per round

= Let c; be the capacities used in the it" round and f;
be the maxflow found in the it" round

« For any edge (u,v), c,,,(u,v) < 2c;(u,v)+1
= i+1stround starts with flow f =2 f,
= Let (A,B) be a min cut from the i round

= V(f;)=c,(A,B) so v(f)=2c;(A,B)
s V(fi,,) <£c,,(A,B) <2c(A,B)+m =v(f)+m

O(m) time per augmentation
Total time O(m? log U)

54

i Edmonds-Karp Algorithm

= Use a shortest augmenting path
(via Breadth First Search in residual graph)

= Time: O(n m?)

55

i BFS/Shortest Path Lemmas

Distance from s In G; Is never reduced by:

Deleting an edge
Proof: no new (hence no shorter) path created

Adding an edge (u,v), provided v Is nearer
than u

Proof: BFS is unchanged, since v visited before
(u,v) examined

<— a back edge

56

i Key Lemma

Let f be a flow, G; the residual graph, and
P a shortest augmenting path. Then no
vertex Is closer to s after augmentation
along P.

Proof: Augmentation along P only deletes
forward edges, or adds back edges that
go to previous vertices along P

57

i Augmentation vs BFS

i Theorem

The Edmonds-Karp Algorithm performs O(mn) flow
augmentations

Proof:

Call (u,v) critical for augmenting path P if it's closest to
s having min residual capacity

It will disappear from G; after augmenting along P

In order for (u,v) to be critical again the (u,v) edge
must re-appear in G; but that will only happen
when the distance to u has increased by 2 (next slide)

It won't be critical again until farther from s

so each edge critical at most n/2 times
59

Critical Edges In G

Shortest s-t path P in G;
>Cp C

O 2B @ rrrorr D@+ —>D

critical edge| d¢(s,v)=d(s,u)+1 since this is a shortest path

After augmenting along P

>0 >
@'—*—O.@r\@_. _,®/\®—> _,@

For (u,v) to be critical later for some flow f" it must be in G,
so must have augmented along a shortest path containing (v,u)

- .t
. R N
. .
* v*
L 4 et
......
llllll

Then we must have d.(s,u)=d:(s,v)+1 = d(s,v)+1=d(s,u)+2

60

i Corollary

= Edmonds-Karp runs in O(nm?) time

61

Project Selection
i a.k.a. The Strip Mining Problem

s Gilven

= a directed acyclic graph G=(V,E)
representing precedence constraints on
tasks (a task points to its predecessors)

= a profit value p(v) associated with each
task vV (may be positive or negative)

= FInd

= a set ALV of tasks that is closed under
predecessors, I.e. If (u,v)LIE and ulJA then

vOA, that maximizes Profit(A)=2.,5, p(V)

62

ﬁ Project Selection Graph

| Each task points to its predecessor tasks |

63

ﬁ Extended Graph
®

i
N
V34

®©

i Extended Graph G’

(S

For each vertex v

If p(v)=0 add (s,v) edge
with capacity p(v)

If p(v)<O0 add (v,t) edge
with capacity —p(v)

65

Extended Graph G’

Want to arrange capacities on edges of G so that for
minimum s-t-cut (S,T) in G, the set A=S-{s}

= Satisfies precedence constraints

= has maximum possible profit in G

Cut capacity with S={s} is just C=2.,. |, .o P(V)
= Profit(A) < C for any set A
To satisfy precedence constraints don’'t want any

original edges of G going forward across the
minimum cut

= That would correspond to a task in A=S-{s} that had a
predecessor not in A=S-{s}

Set capacity of each of the edges of G to C+1
= The minimum cut has size at most C

66

ﬁ Extended Graph G’

/"

Capacity C

67

Cut value

=13+3+2+3+4

=13+3
+C-4-8-10-11-12-14

68

i Project Selection

= Claim Any s-t-cut (S,T) in G’ such that
A=S-{s} satisfies precedence constraints has
capacity
c(S,T)=C - 2,15 p(V) = C - Profit(A)

= Corollary A minimum cut (S,T) In G’ yields
an optimal solution A=S-{s} to the profit
selection problem

= Algorithm Compute maximum flow f in G’,
find the set S of nodes reachable from s Iin G’;
and return S-{s}

69

i Proof of Claim

= A=S-{s} satisfies precedence constraints

No edge of G crosses forward out of A since those
edges have capacity C+1

Only forward edges cut are of the form (v,t) for
vUA or (s,v) for vLIA

The (v,t) edges for vLJA contribute

ZvDA:p(v) < “P(V) =- Zv[lA:p(v) <0 P(V)
The (s,v) edges for vLIA contribute
zleIA: p(v) =20 p(v):C_szIA: p(v) 20 p(V)
Therefore the total capacity of the cut is
c(S,T) =C - 2,4, p(v) =C-Profit(A)

70

