CSE 521: Design &

| Analysis of Algorithms |

Dealing with NP-completeness

Paul Beame



What to do if the problem you want
i to solve is NP-hard

= You might have phrased your problem too
generally

= €.0., In practice, the graphs that actually arise are
far from arbitrary

= maybe they have some special characteristic
that allows you to solve the problem in your
special case

= for example the Independent-Set problem is easy on
“Interval graphs”

Exactly the case for interval scheduling!

= search the literature to see if special cases
already solved




What to do if the problem you want
i to solve is NP-hard

= Try to find an approximation algorithm

= Maybe you can’t get the size of the best Vertex
Cover but you can find one within a factor of 2 of
the best

= Given graph G=(V,E), start with an empty cover

= While there are still edges in E left

= Choose an edge e={u,v} in E and add both u and v
to the cover

= Remove all edges from E that touch either u or v.

« Edges chosen don’t share any vertices so
optimal cover size must be at least # of edges
chosen




What to do if the problem you want
i to solve is NP-hard

= Polynomial-time approximation algorithms for
NP-hard problems can sometimes be ruled
out unless P=NP

» E.g. Coloring Problem:  Given a graph G=(V,E)
find the smallest k such that G has a k-coloring.

= No approximation ratio better than 4/3 is
possible unless P=NP

= The graph in our NP-completeness
reduction is always 4-colorable. This would
let us figure out if it is 3-colorable.




i Travelling Salesperson Problem

= TSP

= Given a weighted graph G find of a
smallest weight tour that visits all vertices
In G

= NP-hard

= Notoriously easy to obtain close to
optimal solutions



Minimum Spanning Tree
Approximation

4




Minimum Spanning Tree
i Approximation: Factor of 2

'Cle ~

o
——o0 u)

% Any tour contains a spanning tree

MST(G) £ TOURpr(G) < 2 MST(G) < 2 TOUR;p(G)



i Why did this work?

= We found an Euler tour on a graph that
used the edges of the original graph
(possibly repeated).

= The weight of the tour was the total
weight of the new graph.

= Suppose now
= All edges possible
= Weights satisfy triangle inequality
= Cc(Uu,w) <c(u,v)+c(v,w)



Minimum Spanning Tree
ﬁ Approximation: Triangle Inequality

o

o o o / \ ]
Nt |

o

J _

=0
Y — .
040

Can shortcut edges
e GO t0 next new vertex
on the Euler tour



4

Minimum Spanning Tree
Approximation: Factor of 2

/\

@)

\O

O

/ Shortcut edges

TOURopr(G) < 2 MST(G) < 2 TOURp1(G)

10



Christofides Algorithm:
i A factor 3/2 approximation

= Any Eulerian subgraph of the weighted
complete graph will do

= Eulerian graphs require that all vertices
have even degree so

= Christofides Algorithm
= Compute an MST T
= Find the set O of odd-degree vertices in T

= Add a minimum-weight perfect matching M
on the vertices in O to T to make every

vertex have even dearee H



ﬁ Christofides Approximation

o
/ (@)

° |

12



|

Christofides Approximation

Any tour costs at least the cost of two matchings on

Claim: 2 Cost(M) < TOURpt

O

13



i Knapsack Problem

= For any € >0 can get an algorithm that
gets a solution within (1+¢) factor of
optimal with running time O(n?(1/€)?)
= “Polynomial-Time Approximation Scheme”
or PTAS

= Based on maintaining just the high order
bits in the dynamic programming solution.

14



What to do if the problem you want
to solve is NP-hard

= More on approximation algorithms

= Recent research has classified problems based on what
kinds of approximations are possible if PZNP

= Best: (1+¢) factor for any £>0.
= packing and some scheduling problems, TSP in plane

= Some fixed constant factor > 1, e.g. 2, 3/2, 100
= Vertex Cover, TSP in space, other scheduling problems

= O(log n) factor

= Set Cover, Graph Partitioning problems

= Worst: Q(n'¢) factor for any >0
= Clique, Independent-Set, Coloring

15



PCP Theorem and Hardness of
Approximation

= PCP (Probabilistically Checkable Proofs) Theorem: Every
A< NP has a polytime verifier V that looks at only 3
random bits of its certificate ¢ such that

= XA = There is a certificate c such that V(x,c) always
outputs YES

= x not € A= For every certificate c, V(x,c) outputs YES with
probability < 0.99999

= Implies that there is a polytime reduction f such that
s F e 3SAT = f(F) € 3SAT

= F not € #SAT = any truth assignment to f(F) satisfies at most
88% (< 7/8+¢) of clauses of F

16



What to do if the problem you want
i to solve is NP-hard

= Try an algorithm that is provably fast “on
average’.

= To even try this one needs a model of what a
typical instance is.

= Typically, people consider “random graphs”
= e.g. all graphs with a given # of edges are
equally likely
= Problems:
= real data doesn’t look like the random graphs
=« distributions of real data aren’t analyzable

17



What to do if the problem you want
to solve is NP-hard

= Try to search the space of possible hints/certificates
In a more efficient way and hope it is quick enough

» Backtracking search
= E.g. For SAT there are 2" possible truth assignments

= If we set the truth values one-by-one we might be able to
figure out whole parts of the space to avoid,
= e.g. After setting x, -1, x, -0 we don’t even need to
set X, or x, to know that it won’t satisfy
(=Xy OXp) O (=X, OXg) O (X, O=Xg) O(Xy O=1Xy)

= Related technique: branch-and-bound

= Backtracking search can be very effective even
with exponential worst-case time
= For example, the best SAT algorithms used in practice

are all variants on backtracking search and can solve
surprisingly large problems — more later

18



What to do if the problem you want
i to solve is NP-hard

= Use heuristic algorithms and hope they
give good answers
= NO guarantees of quality
« Many different types of heuristic algorithms

= Many different options, especially for
optimization problems, such as TSP,
where we want the best solution.

= We’'ll mention several on following slides

19



Heuristic algorithms for

i NP-hard problems

= local search for optimization problems

= Need a notion of two solutions being
neighbors

« Start at an arbitrary solution S
= While there Is a neighbor T of S that Is
better than S

s ST
= Usually fast but often gets stuck in a local
optimum and misses the global optimum

= With some notions of neighbor can take a long
time in the worst case

20



i e.g., Neighboring solutions for TSP

Solution S Solution T

1 [

Two solutions are neighbors
Iff there Is a pair of edges you can
swap to transform one to the other

21



Heuristic algorithms for
NP-hard problems

= randomized local search

= start local search several times from random starting points and
take the best answer found from each point

= more expensive than plain local search but usually
much better answers

= Simulated annealing

= like local search but at each step sometimes move to a worse
neighbor with some probability

= probability of going to a worse neighbor is set to decrease
with time as, presumably, solution is closer to optimal

= helps avoid getting stuck in a local optimum but often slow
to converge (much more expensive than randomized local
search)

= analogy with slow cooling to get to lowest energy state in a
crystal (or in forging a metal)

22



Heuristic algorithms for
NP-hard problems

= genetic algorithms

view each solution as a string (analogy with DNA)
maintain a population of good solutions

allow random mutations of single characters of individual
solutions

combine two solutions by taking part of one and part of another
(analogy with crossover in sexual reproduction)

go with the winners : get rid of solutions that have the worst values
and make multiple copies of solutions that have the best values
(analogy with natural selection -- survival of the fittest).

Not a lot of evidence that they work well

= Often “brittle” when they do — small changes in constr aints
lead to big changes in solution

= Usually very slow

However, the “go with the winners” part of the strat egy can be
combined with local search and works well in that ¢ ontext

23



Heuristic algorithms

= artificial neural networks

based on very elementary model of human neurons
Set up a circuit of artificial neurons

= each artificial neuron is an analog circuit gate whose
computation depends on a set of connection strengths

Train the circuit

= Adjust the connection strengths of the neurons by giving
many positive & negative training examples and seeing if
It behaves correctly

The network is now ready to use

useful for ill-defined classification problems such as optical
character recognition but not typical cut & dried p roblems

24



Other directions

= DNA computing

= Each possible hint for an NP problem is represented as
a string of DNA

= fill a test tube with all possible hints
= View verification algorithm as a series of tests
= €.g. checking each clause is satisfied in case of
Satisfiability
= For eachtestin turn

= use lab operations to filter out all DNA strings th at
fail the test (works in parallel on all strings; uses PCR)

= If any string remains the answer is a YES

= Relies on fact that Avogadro’'s # 6 x 1023 is large to get enough
strings to fit in a test-tube.

= Error-prone & problem sizes typically very small!

25



Other directions

Quantum computing

Use physical processes at the quantum level to impl ement “weird” kinds
of circuit gates

= unitary transformations
Quantum objects can be in a superposition of many p ure states at once
= can have n objects together in a superposition of 2" states

Each quantum circuit gate operates on the whole sup erposition of states
at once

= Inherent parallelism but classical randomized algorithms have a similar
parallelism: not enough on its own

= Advantage over classical: parallel copies interfere with each other
= Can reduce brute force search from 2" to 2"2 time

Strong evidence that they won’t solve NP-complete p roblems efficiently
Theoretically able to factor efficiently.

Large practical problems: errors, decoherence that n eed to be overcome.

26



