# CSE 521: Design & Analysis of Algorithms I

#### **Dealing with NP-completeness**

Paul Beame



- You might have phrased your problem too generally
  - e.g., in practice, the graphs that actually arise are far from arbitrary
    - maybe they have some special characteristic that allows you to solve the problem in your special case
      - for example the Independent-Set problem is easy on "interval graphs"
        - Exactly the case for interval scheduling!
    - search the literature to see if special cases already solved



- Try to find an approximation algorithm
  - Maybe you can't get the size of the best Vertex Cover but you can find one within a factor of 2 of the best
    - Given graph G=(V,E), start with an empty cover
    - While there are still edges in E left
      - Choose an edge e={u,v} in E and add both u and v to the cover
      - Remove all edges from E that touch either u or v.
    - Edges chosen don't share any vertices so optimal cover size must be at least # of edges chosen



- Polynomial-time approximation algorithms for NP-hard problems can sometimes be ruled out unless P=NP
  - E.g. Coloring Problem: Given a graph G=(V,E) find the smallest k such that G has a k-coloring.
    - No approximation ratio better than 4/3 is possible unless P=NP
      - The graph in our NP-completeness reduction is always 4-colorable. This would let us figure out if it is 3-colorable.



#### **Travelling Salesperson Problem**

#### TSP

 Given a weighted graph G find of a smallest weight tour that visits all vertices in G

#### NP-hard

Notoriously easy to obtain close to optimal solutions



# **Minimum Spanning Tree Approximation**





# Minimum Spanning Tree Approximation: Factor of 2



 $MST(G) \le TOUR_{OPT}(G) \le 2 MST(G) \le 2 TOUR_{OPT}(G)$ 



#### Why did this work?

- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- The weight of the tour was the total weight of the new graph.
- Suppose now
  - All edges possible
  - Weights satisfy triangle inequality
    - $\mathbf{c}(\mathbf{u},\mathbf{w}) \leq \mathbf{c}(\mathbf{u},\mathbf{v}) + \mathbf{c}(\mathbf{v},\mathbf{w})$



### Minimum Spanning Tree Approximation: Triangle Inequality



 Go to next new vertex on the Euler tour



# Minimum Spanning Tree Approximation: Factor of 2



 $TOUR_{OPT}(G) \le 2 MST(G) \le 2 TOUR_{OPT}(G)$ 



# Christofides Algorithm: A factor 3/2 approximation

- Any Eulerian subgraph of the weighted complete graph will do
  - Eulerian graphs require that all vertices have even degree so
- Christofides Algorithm
  - Compute an MST T
  - Find the set O of odd-degree vertices in T
  - Add a minimum-weight perfect matching M on the vertices in O to T to make every vertex have even degree



### **Christofides Approximation**





### **Christofides Approximation**

Any tour costs at least the cost of two matchings on O



Claim: 2 Cost(M) ≤ TOUR<sub>OPT</sub>



#### **Knapsack Problem**

- For any  $\varepsilon > 0$  can get an algorithm that gets a solution within  $(1+\varepsilon)$  factor of optimal with running time  $O(n^2(1/\varepsilon)^2)$ 
  - "Polynomial-Time Approximation Scheme" or PTAS
  - Based on maintaining just the high order bits in the dynamic programming solution.



- More on approximation algorithms
  - Recent research has classified problems based on what kinds of approximations are possible if P≠NP
    - Best:  $(1+\epsilon)$  factor for any  $\epsilon>0$ .
      - packing and some scheduling problems, TSP in plane
    - Some fixed constant factor > 1, e.g. 2, 3/2, 100
      - Vertex Cover, TSP in space, other scheduling problems
    - $\Theta(\log n)$  factor
      - Set Cover, Graph Partitioning problems
    - Worst:  $\Omega(n^{1-\epsilon})$  factor for any  $\epsilon > 0$ 
      - Clique, Independent-Set, Coloring

# PCP Theorem and Hardness of Approximation

- PCP (Probabilistically Checkable Proofs) Theorem: Every A∈ NP has a polytime verifier V that looks at only 3 random bits of its certificate c such that
  - x∈A ⇒ There is a certificate c such that V(x,c) always outputs YES
  - x not ∈ A ⇒ For every certificate c, V(x,c) outputs YES with probability < 0.99999</p>
- Implies that there is a polytime reduction f such that
  - $F \in 3SAT \Rightarrow f(F) \in 3SAT$
  - F not ∈ #SAT ⇒ any truth assignment to f(F) satisfies at most 88% (< 7/8+ε) of clauses of F</p>



- Try an algorithm that is provably fast "on average".
  - To even try this one needs a model of what a typical instance is.
  - Typically, people consider "random graphs"
    - e.g. all graphs with a given # of edges are equally likely
  - Problems:
    - real data doesn't look like the random graphs
    - distributions of real data aren't analyzable



- Try to search the space of possible hints/certificates in a more efficient way and hope it is quick enough
  - Backtracking search
    - E.g. For SAT there are 2<sup>n</sup> possible truth assignments
    - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
      - e.g. After setting x₁←1, x₂←0 we don't even need to set x₃ or x₄ to know that it won't satisfy
        (¬x₁ ∨ x₂) ∧ (¬x₂ ∨ x₃) ∧ (x₄ ∨ ¬x₃) ∧ (x₁ ∨ ¬x₄)
    - Related technique: branch-and-bound
  - Backtracking search can be very effective even with exponential worst-case time
    - For example, the best SAT algorithms used in practice are all variants on backtracking search and can solve surprisingly large problems – more later



- Use heuristic algorithms and hope they give good answers
  - No guarantees of quality
  - Many different types of heuristic algorithms
  - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
    - We'll mention several on following slides



## Heuristic algorithms for NP-hard problems

- local search for optimization problems
  - need a notion of two solutions being neighbors
  - Start at an arbitrary solution S
  - While there is a neighbor T of S that is better than S

- Usually fast but often gets stuck in a local optimum and misses the global optimum
  - With some notions of neighbor can take a long time in the worst case



#### e.g., Neighboring solutions for TSP



Two solutions are neighbors iff there is a pair of edges you can swap to transform one to the other

# Heuristic algorithms for NP-hard problems

#### randomized local search

- start local search several times from random starting points and take the best answer found from each point
  - more expensive than plain local search but usually much better answers

#### simulated annealing

- like local search but at each step sometimes move to a worse neighbor with some probability
  - probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
  - helps avoid getting stuck in a local optimum but often slow to converge (much more expensive than randomized local search)
  - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)



#### genetic algorithms

- view each solution as a string (analogy with DNA)
- maintain a population of good solutions
- allow random mutations of single characters of individual solutions
- combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
- go with the winners: get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).
- Not a lot of evidence that they work well
  - Often "brittle" when they do small changes in constraints lead to big changes in solution
  - Usually very slow
- However, the "go with the winners" part of the strategy can be combined with local search and works well in that context



#### artificial neural networks

- based on very elementary model of human neurons
- Set up a circuit of artificial neurons
  - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
- Train the circuit
  - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
- The network is now ready to use
- useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems



#### Other directions

- DNA computing
  - Each possible hint for an NP problem is represented as a string of DNA
    - fill a test tube with all possible hints
  - View verification algorithm as a series of tests
    - e.g. checking each clause is satisfied in case of Satisfiability
  - For each test in turn
    - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
  - If any string remains the answer is a YES.
  - Relies on fact that Avogadro's # 6 x 10<sup>23</sup> is large to get enough strings to fit in a test-tube.
  - Error-prone & problem sizes typically very small!

#### Other directions

- Quantum computing
  - Use physical processes at the quantum level to implement "weird" kinds of circuit gates
    - unitary transformations
  - Quantum objects can be in a superposition of many pure states at once
    - can have n objects together in a superposition of 2<sup>n</sup> states
  - Each quantum circuit gate operates on the whole superposition of states at once
    - inherent parallelism but classical randomized algorithms have a similar parallelism: not enough on its own
    - Advantage over classical: parallel copies interfere with each other
    - Can reduce brute force search from 2<sup>n</sup> to 2<sup>n/2</sup> time
  - Strong evidence that they won't solve NP-complete problems efficiently
  - Theoretically able to factor efficiently.
  - Large practical problems: errors, decoherence that need to be overcome.