CSE 521: Design & Analysis of Algorithms I

Online algorithms

- Making decisions under uncertainty
- Many ways to analyze.
 - Competitive analysis: worst case ratio of performance of online algorithm to performance of optimal with hindsight.
 - Regret: worst case difference in performance.

Competitive Analysis Examples

- Ski Rental
- Finding a hole in a fence
- List Update
 - (Splay trees)
- Paging and caching

Ski Rental

- Renting skis costs $50
- Buying skis costs $500
- What should you do? Rent or buy?
- If you knew the future…

Finding a hole in a fence

- You’re standing in front of a long fence. There is a hole somewhere, but you don’t know where it is.
- Each period, you can take a step left or a step right.
- Your goal is to find the hole with the fewest number of steps.

List update

- Maintain a linked list of n items (numbered 1..n)
- Perform a sequence of lookups, each one takes time = position of element in list.
- Rule *: After a lookup, requested item may be put anywhere in the list between the start and its position before the lookup.
- Additional swaps cost 1 each.
- Have to make decisions online.
A good algorithm: Move to Front

- Always move requested item to front of list.
- Theorem: MTF has competitive ratio 2.
- Proof:
 - Rule * → Rule **: After a request required to move the requested element to front.
 - Can simulate an algorithm with cost C under rule * by an algorithm with cost at most 2C under rule **.
 - With Rule **, MTF is optimal.

Online learning and Multiplicative Weights Update Method

- Method has been used in many variants over the years
 - From a recent survey by Arora, Hazan, Kale:
 - This "meta algorithm and its analysis are simple and useful enough that they should be viewed as a basic tool taught to all algorithms students together with divide-and-conquer, dynamic programming, random sampling, and the like."

Online choice from experts

- Simple case: Stock market direction
 - n experts
 - every day each expert i makes a binary guess/prediction (up=+1 or down=-1)
 - at end of the day can observe the outcome of what the market did that day
- Goal: Is there a strategy that allows us to do nearly as well as the best of these experts in hindsight?

Simpler question

- n experts
 - every day each expert i makes a binary guess/prediction (up=+1 or down=-1)
 - at end of the day can observe the outcome of what the market did that day
 - One of them is perfect – never makes a mistake. We just don’t know which one.
- Goal: Can we find a strategy that makes no more than \(\lg(n)\) mistakes?

What if no expert is perfect?

- Intuition: making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.
- Weighted majority algorithm:
 - Start with all experts having weight 1.
 - Predict based on majority vote.
 - Penalize mistakes by cutting weight in half.
- Claim: do nearly as well as best expert in hindsight.
- Can use this to combine multiple algos to do nearly as well as best in hindsight.