The problems are worth 10 points each. If I ask you to write down an algorithm, use pseudocode.

1. **Asymptotic analysis.** Sort the following functions from asymptotically smallest to largest, indicating ties if there are any:
\[n, \log n, \log \log^* n, \log^* n, n \log n, \log(n \log n), n^{n/\log n}, n^{\log n}, (\log n)^n, (\log n)^{\log n}, (1 + \frac{1}{n})^n \]
\[2^{\sqrt{\log n}}, 2^n, n^{\log \log n}, n^{1/1000}, (1 + \frac{1}{1000})^n, (1 - \frac{1}{1000})^n, (\log n)^{1000}, \log_{1000} n, (\log 1000)^n, 1 \]

[To simplify notation, write \(f(n) \ll g(n) \) to mean \(f(n) = o(g(n)) \) and \(f(n) \equiv g(n) \) to mean \(f(n) = \Theta(g(n)) \). For example, the functions \(n^2, n, (n^2)^n, n^3 \) are sorted as \(n \ll n^2 \equiv (n^2)^n \ll n^3 \).

2. **Linearity of expectation.** Suppose that \(x_1, x_2, \ldots, x_n \in [0, 1] \) are chosen uniformly and independently at random. We are going to analyze a very simple sorting algorithm which sorts the numbers \(\{x_1, \ldots, x_n\} \) in \(O(n) \) expected time.

 There are going to be \(n \) buckets \(B_1, B_2, \ldots, B_n \). For a real number \(x \), we use \(\lceil x \rceil \) to denote the smallest integer greater than \(x \). The algorithm is as follows.

 (a) For \(i = 1, 2, \ldots, n \) put \(x_i \) into bucket \(B_j \) where \(j = \lceil x_i \cdot n \rceil \).
 (b) For \(j = 1, 2, \ldots, n \) sort \(B_j \).
 (c) Concatenate the sorted buckets.

 Part 1: Give a brief description of how you would implement the steps of the algorithms so that the total running time is
 \[O(n) + \sum_{j=1}^{n} O(|B_j|^2). \]

 Part 2: Show that the expected running time (over the random choice of inputs) of your algorithm is \(O(n) \).

3. **Dynamic programming.** Consider two strings \(X \) and \(Y \) over the alphabet \(\{A, C, G, T\} \). The edit distance between \(X \) and \(Y \) is the minimum cost of a sequence of edit operations which turns \(X \) into \(Y \). The operations are as follows.

 (a) Insert a character (cost 2).
 (b) Delete a character (cost 2).
 (c) Replace a character (cost 1).

 Design and formally analyze an algorithm for computing the edit distance (i.e. the minimum cost) between \(X \) and \(Y \) which runs in time \(O(|X| \cdot |Y|) \). Here, \(|X| \) denotes the length (number of characters) in the string \(X \).
4. **Divide and conquer** (borrowed from Jeff Erickson). Some graphics hardware includes support for an operation called blit, or block transfer, which quickly copies a rectangular chunk of a pixelmap (a two-dimensional array of pixel values) from one location to another. This is a two-dimensional version of the standard C library function `memcpy()`.

Suppose we want to rotate an \(n \times n \) pixelmap 90° clockwise. One way to do this is to split the pixelmap into four \(n/2 \times n/2 \) blocks, move each block to its proper position using a sequence of five blits, then recursively rotate each block. Alternately, we can first recursively rotate the blocks and then blit them into place afterwards. See Figures 1 and 2.

![Figure 1](image1.png)

Figure 1: The first algorithm (blit then recurse) in action.

![Figure 2](image2.png)

Figure 2: Two algorithms for rotating a pixelmap. Black arrows indicate blitting the blocks into place. White arrows indicate recursively rotating the blocks.

In the following questions, assume \(n \) is a power of two.

(a) Prove that both versions of the algorithm are correct.

(b) *Exactly* how many blits does the algorithm perform?

(c) What is the algorithm’s running time if a \(k \times k \) blit takes \(O(k^2) \) time?

(d) What if a \(k \times k \) blit takes only \(O(k) \) time?

5. **Graph algorithms.** Write an algorithm that, given an undirected graph \(G = (V, E) \) in adjacency list representation, detects whether \(G \) contains a cycle. Your algorithm should run in \(O(m + n) \) time where \(m = |E| \) and \(n = |V| \).