
CSE 521: Algorithms Design, 2006 Winter

Instructor: Venkatesan Guruswami

Lecture 1 (Jan 3)

• Stable Matching Problem

– Gale-Shapley algorithm

Lecture 2 (Jan 5)

• Some classical problems

– Interval Scheduling

– Weighted Interval Scheduling

– Bipartite Matching

– Independent Set (generalize the above problems)

– Competitive Facility Location

• Greedy Algorithms

– Interval Scheduling

∗ earliest starting time first (works arbitrarily bad)

∗ minimum size first (tight 2-approximation)

∗ earliest ending time first (optimal, proof)

Lecture 3 (Jan 10)

• Greedy Algorithms

– Scheduling to minimize the maximum lateness

∗ earliest deadline first (optimal, proof)

∗ Q: minimize total lateness ?

– Optimal caching

∗ evict item whose next request is farest (optimal, proof)

1



Lecture 4 (Jan 12)

• Divide and Conquer

– Mergesort algorithm

∗ break numbers arbitrarily into half

– Integer multiplication

∗ break integers into first half and second half

– Polynomial multiplication (The Fast Fourier Transform)

∗ break the degree of polynomials and the corresponding seek-
ing values into half

Lecture 5 (Jan 17)

• Divide and Conquer

– Closest Pair of Points

∗ break points into half according to their x-coordinate

∗ when combine two solutions together, for each point p, con-
sider all points on the other side that are “close” enough to
p.

• Dynamic Programming

– Weighted Interval Scheduling

∗ recursion on whether the current last job is scheduled or not

– Knapsack

∗ recursion on the size of knapsack, given the fixed order of
items

∗ Note: this gives a pseudo-polynomial time algorithm

2



Lecture 6 (Jan 19)

• Dynamic Programming

– RNA Secondary Structure

∗ recursion on the distance of any two symbols in the string

– Traveling Salesman Problem (TSP)

∗ recursion on the number of remaining vertices to the destina-
tion

∗ Note: this does not give a polynomial time algorithm, but it’s
much better than the trivial O(n!) one.

– Shortest Paths (with negative weights and without negative cy-
cles)

∗ recursion on the number of edges used in the shortest path

Lecture 7 (Jan 24)

• Dynamic Programming

– Negative cycles in a graph

∗ negative cycle detection

∗ find a negative cycle

∗ Q: zero weight cycle?

• Network Flow

– Introduction

Lecture 8 (Jan 26)

• Network Flow

– Ford-Fulkerson algorithm

∗ idea: residual graph with backward edges, augmenting path

∗ feasibility

∗ termination

∗ correctness

3



Lecture 9 (Jan 31)

• Network Flow

– Max-flow Min-cut theorem

– Implementation of the Ford-Fulkerson algorithm in polynomial
time

• Applications of Network Flow

– Bipartite matching

∗ idea: augmenting path

– Disjoint paths in graphs

∗ idea: reduce to maximum flow problem

Lecture 10 (Feb 2)

• Network Flow

– Min-cost perfect matching

– Min-cost max flow

– Min-cost circulation

• Linear Programming

– Introduction

Lecture 11 (Feb 7)

• Linear Programming

– Examples

– History

– Simplex method

Lecture 12 (Feb 9)

• Linear Programming

– Duality

– Strong duality theorem

4



Lecture 13 (Feb 14)

• Linear Programming

– Week and Strong Duality Theorem

– Example: Max-flow Min-cut

– Complementary slackness condition

• Approximation Algorithms

– Vertex Cover

∗ idea: rounding (approximation ratio: 2)

Lecture 14 (Feb 16)

• Approximation Algorithms

– Vertex Cover

∗ idea: primal-dual (approximation ratio: 2)

∗ integrality gap of the linear program

∗ open Q: approximation ratio better than 2?

– Set Cover

∗ idea: greedy (approximation ratio: O(n log n))

Lecture 15 (Feb 21)

• Approximation Algorithms

– Center Selection Problem

∗ idea: greedy (approximation ratio: 2)

∗ tightness of the ratio

– Knapsack

∗ idea: pseudo-polynomial time algorithm and rounding (ap-
proximation ratio: 1 + ε, for any ε > 0)

∗ polynomial time approximation scheme (PTAS)

5



Lecture 16 (Feb 23)

• Approximation Algorithms

– Knapsack (cont.)

∗ idea: pseudo-polynomial time algorithm and rounding (ap-
proximation ratio: 1 + ε, for any ε > 0)

∗ polynomial time approximation scheme (PTAS)

• Randomized Algorithms

– Min-cut

∗ idea: contract vertices randomly

Lecture 17 (Feb 28)

• Randomized Algorithms

– Max Exact 3-SAT

∗ idea: toss a fair coin for each variable (achieves the best we
can approximate unless P = NP )

∗ polynomial time in expectation, use waiting time bound

– Coupon Collection

∗ problem: n coupons, get a random one every day, how long
to collect all coupons?

∗ idea: Xi number of days to get the i-th coupon after getting
the (i− 1)-th coupon

∗ θ(nlogn) in expectation, again use waiting time bound

– MAXSAT (LP)

∗ idea: randomized rounding to LPR

∗ e
e−1

-approximation in expectation

6



Lecture 18 (Mar 2)

• Hashing

– problem

∗ static: support search only, can assume a fixed set

∗ dynamic: search and update, must deal with a dynamic set

– concepts: dictionary, universe, hash function, collision

– how to hash?

∗ deterministic hashing linear worst-case search

∗ totally random hash achieves constant worst-case search, but
need large specification (linear in universe size)

– randomized hashing

∗ 2-universal family

∗ universal hashing lemma

∗ linear total number of collision in expectation

Lecture 19 (Mar 7)

• Hashing

– static case: worst-case constant search

∗ soln 1: use quadratic space

· repeat till finding a collision-free hash function for the
given set

· each trial successful with 1/2 probability (Markov inequal-
ity)

· surprisingly, this achieves the best we can approximate
unless P = NP

∗ soln 2: linear space, FKS-perfect-hashing (1973)

· 2-level hashing

· for each cell with collisions, build a quadratic space hash
table

· repeat till finding a linear space hash scheme (each trial
successful with 1/2 probability)

7



– dynamic hashing

∗ dynamic perfect hashing (1994): constant worst-case search,
constant update w.h.p.

∗ cuckoo hashing (2001): conceptually simpler, much smaller
constant factor (2 vs. 35)

· use a pair of hash functions

· constant worst-case search and deletion, constant inser-
tion in expectation

· require O(logn)-wise independent family (in practice,
work well with weaker assumptions)

Lecture 20 (Mar 9)

• cuckoo hashing

• summary

8


