CSE 521: Algorithms Design, 2006 Winter

Instructor: Venkatesan Guruswami

Lecture 1 (Jan 3)

- Stable Matching Problem
 - Gale-Shapley algorithm

Lecture 2 (Jan 5)

- Some classical problems
 - Interval Scheduling
 - Weighted Interval Scheduling
 - Bipartite Matching
 - Independent Set (generalize the above problems)
 - Competitive Facility Location
- Greedy Algorithms
 - Interval Scheduling
 - * earliest starting time first (works arbitrarily bad)
 - * minimum size first (tight 2-approximation)
 - * earliest ending time first (optimal, proof)

Lecture 3 (Jan 10)

- Greedy Algorithms
 - Scheduling to minimize the maximum lateness
 - * earliest deadline first (optimal, proof)
 - * Q: minimize total lateness ?
 - Optimal caching
 - * evict item whose next request is farest (optimal, proof)

Lecture 4 (Jan 12)

- Divide and Conquer
 - Mergesort algorithm
 - * break numbers arbitrarily into half
 - Integer multiplication
 - * break integers into first half and second half
 - Polynomial multiplication (The Fast Fourier Transform)
 - $\ast\,$ break the degree of polynomials and the corresponding seeking values into half

Lecture 5 (Jan 17)

- Divide and Conquer
 - Closest Pair of Points
 - * break points into half according to their x-coordinate
 - * when combine two solutions together, for each point p, consider all points on the other side that are "close" enough to p.
- Dynamic Programming
 - Weighted Interval Scheduling
 - * recursion on whether the current last job is scheduled or not
 - Knapsack
 - \ast recursion on the size of knapsack, given the fixed order of items
 - * Note: this gives a pseudo-polynomial time algorithm

Lecture 6 (Jan 19)

- Dynamic Programming
 - RNA Secondary Structure
 - * recursion on the distance of any two symbols in the string
 - Traveling Salesman Problem (TSP)
 - $\ast\,$ recursion on the number of remaining vertices to the destination
 - * Note: this does not give a polynomial time algorithm, but it's much better than the trivial O(n!) one.
 - Shortest Paths (with negative weights and without negative cycles)

* recursion on the number of edges used in the shortest path

Lecture 7 (Jan 24)

- Dynamic Programming
 - Negative cycles in a graph
 - * negative cycle detection
 - * find a negative cycle
 - * Q: zero weight cycle?
- Network Flow
 - Introduction

Lecture 8 (Jan 26)

- Network Flow
 - Ford-Fulkerson algorithm
 - * idea: residual graph with backward edges, augmenting path
 - * feasibility
 - * termination
 - * correctness

Lecture 9 (Jan 31)

- Network Flow
 - Max-flow Min-cut theorem
 - Implementation of the Ford-Fulkerson algorithm in polynomial time
- Applications of Network Flow
 - Bipartite matching
 - * idea: augmenting path
 - Disjoint paths in graphs
 - * idea: reduce to maximum flow problem

Lecture 10 (Feb 2)

- Network Flow
 - Min-cost perfect matching
 - Min-cost max flow
 - Min-cost circulation
- Linear Programming
 - Introduction

Lecture 11 (Feb 7)

- Linear Programming
 - Examples
 - History
 - Simplex method

Lecture 12 (Feb 9)

- Linear Programming
 - Duality
 - Strong duality theorem

Lecture 13 (Feb 14)

- Linear Programming
 - Week and Strong Duality Theorem
 - Example: Max-flow Min-cut
 - Complementary slackness condition
- Approximation Algorithms
 - Vertex Cover
 - * idea: rounding (approximation ratio: 2)

Lecture 14 (Feb 16)

- Approximation Algorithms
 - Vertex Cover
 - * idea: primal-dual (approximation ratio: 2)
 - * integrality gap of the linear program
 - * open Q: approximation ratio better than 2?
 - Set Cover
 - * idea: greedy (approximation ratio: $O(n \log n)$)

Lecture 15 (Feb 21)

- Approximation Algorithms
 - Center Selection Problem
 - * idea: greedy (approximation ratio: 2)
 - * tightness of the ratio
 - Knapsack
 - * idea: pseudo-polynomial time algorithm and rounding (approximation ratio: $1 + \epsilon$, for any $\epsilon > 0$)
 - * polynomial time approximation scheme (PTAS)

Lecture 16 (Feb 23)

- Approximation Algorithms
 - Knapsack (cont.)
 - * idea: pseudo-polynomial time algorithm and rounding (approximation ratio: $1 + \epsilon$, for any $\epsilon > 0$)
 - * polynomial time approximation scheme (PTAS)
- Randomized Algorithms
 - Min-cut
 - * idea: contract vertices randomly

Lecture 17 (Feb 28)

- Randomized Algorithms
 - Max Exact 3-SAT
 - * idea: toss a fair coin for each variable (achieves the best we can approximate unless P = NP)
 - * polynomial time in expectation, use waiting time bound
 - Coupon Collection
 - * problem: n coupons, get a random one every day, how long to collect all coupons?
 - * idea: X_i number of days to get the *i*-th coupon after getting the (i 1)-th coupon
 - * $\theta(nlogn)$ in expectation, again use waiting time bound
 - MAXSAT (LP)
 - * idea: randomized rounding to LPR
 - * $\frac{e}{e-1}$ -approximation in expectation

Lecture 18 (Mar 2)

- Hashing
 - problem
 - * static: support search only, can assume a fixed set
 - * dynamic: search and update, must deal with a dynamic set
 - concepts: dictionary, universe, hash function, collision
 - how to hash?
 - * deterministic hashing linear worst-case search
 - * totally random hash achieves constant worst-case search, but need large specification (linear in universe size)
 - randomized hashing
 - * 2-universal family
 - * universal hashing lemma
 - $\ast\,$ linear total number of collision in expectation

Lecture 19 (Mar 7)

- Hashing
 - static case: worst-case constant search
 - * soln 1: use quadratic space
 - \cdot repeat till finding a collision-free hash function for the given set
 - · each trial successful with 1/2 probability (Markov inequality)
 - \cdot surprisingly, this achieves the best we can approximate unless P=NP
 - * soln 2: linear space, FKS-perfect-hashing (1973)
 - \cdot 2-level hashing
 - $\cdot\,$ for each cell with collisions, build a quadratic space hash table
 - \cdot repeat till finding a linear space hash scheme (each trial successful with 1/2 probability)

- dynamic hashing
 - * dynamic perfect hashing (1994): constant worst-case search, constant update w.h.p.
 - * cuckoo hashing (2001): conceptually simpler, much smaller constant factor (2 vs. 35)
 - $\cdot\,$ use a pair of hash functions
 - \cdot constant worst-case search and deletion, constant insertion in expectation
 - · require O(logn)-wise independent family (in practice, work well with weaker assumptions)

Lecture 20 (Mar 9)

- cuckoo hashing
- summary