
CSE 521: Design and Analysis of Algorithms Winter 2006
Take Home Midterm Instructor: Venkatesan Guruswami
Due on February 14, 2006 in class.

Instructions: This is a take home exam with the following rules and instructions:

• The work you turn in should be entirely your own. You are not allowed to collaborate or
discuss the problems, solutions, or any aspect relating to this exam with your classmates, or
anyone else. If you have some difficulty following any of the questions or think something is
ambiguous, send an email to the course instructor/TA.

• You are ONLY permitted to refer to the Kleinberg-Tardos text, your class notes and solutions
to previous problem sets. Reference to any other source will be considered an act of academic
dishonesty.

• Devote sufficient time for writing your solutions in a clear manner. It will help our evaluation,
and also help you be more convinced of the correctness of what you turn in.

• If for some reason you cannot make it to class on Tuesday, make prior arrangements with us
to turn in your exam before class on Tuesday.

• Attempt all questions. The exam is on 60 points. I think the exam looks longer than it really
is, but if the length causes you to panic a bit, let me reassure you by saying that solving 4
out of the 5 problems correctly will get you a good (about 75% on an absolute scale) score.

1. (5+5 = 10 points) State whether the following statements are True of False, and justify your
answer.

(a) Let G = (V,E) be a directed graph. Let a, b, c ∈ V be three distinct vertices such that in
the graph G there exist k mutually edge-disjoint paths from a to b, as well as k mutually
edge-disjoint paths from b to c. Then there also exist k mutually edge-disjoint paths
between a and c.

(b) Consider the following “Forward-Edge Only” algorithm for computing s-t flows. The
algorithm runs in a sequence of augmentation steps till there is no s-t path in the residual
graph, except that we use a variant of the residual graph that only includes the forward
edges. In other words, the algorithm searches for s-t paths in a graph G̃f consisting
only of edges e for which f(e) < c(e), and terminates when there is no augmenting path
consisting entirely of such edges. Note that we do not prescribe how this algorithm
chooses its forward-edge paths, it may choose them in any fashion it wants, provided
that it terminates only when there are no forward-edge paths.
Now to our claim: On every instance of the Maximum Flow problem, the forward-
edge only algorithm returns a flow with value at least 1/4 of the maximum-flow value
(regardless of how it chooses it forward-edge paths).



2. (12 points) Given a sequence σ of distinct integers x1, x2, . . . , xn, a monotonic subsequence of
σ of length ` ≥ 1 is a sequence xi1 , xi2 , . . . , xi` such that 1 ≤ i1 < i2 < · · · < i` ≤ n and either
xi1 < xi2 < · · · < xi` or xi1 > xi2 > · · · > xi` . Give an algorithm that on input a sequence
of distinct integers, finds a monotonic subsequence of maximum length. For full credit, your
algorithm should use only O(n log n) comparisons where n is the length of the input sequence.
Suggestion: First come up with a polynomial time algorithm using a dynamic programming
like approach — a natural way to create subproblems is to consider prefixes of the input
sequence, but you will have to figure what exactly to store about the prefixes. The polytime
algorithm should get you a good amount of the credit; and then worry about optimizing the
runtime.

3. (6 + 6 = 12 points) This problem concerns Boolean circuits for computing the majority of n
bits. Formally, the majority function Majorityn on n bits is defined by:

Majorityn(x1, x2, . . . , xn) =
{

1 if
∑n

i=1 xi ≥ n/2
0 otherwise

.

We wish to find small circuits to compute Majorityn. In our circuits, we allow three kinds of
gates: AND, OR, and NOT. We restrict the fan-in of the AND and OR gates to two (i.e., these
gates compute the AND and OR of their two input bits), but they can have arbitrarily large
fan-out (i.e., their output can be connected as input to as many other gates as we choose).
The NOT gates negate their input bit, and can also have any fan-out. Mathematically, the
gates and connecting wires form a directed acyclic graph (DAG). The size of a circuit is the
number of gates in it.

(a) Give an algorithm, that on input n, runs in time polynomial in n and outputs a circuit
of size O(n) to compute Majorityn. (Hint: Divide and conquer.)

(b) Note that Majorityn is a monotone function, i.e., flipping an input bit from 0 to 1 never
causes Majorityn to change value from 1 to 0. Every monotone function admits a circuit
using only AND and OR gates that computes it (convince yourself why this is true) –
such a circuit, that does not use any NOT gates, is called a monotone circuit.
Give an algorithm, that on input n, runs in time polynomial in n and outputs a monotone
circuit of size O(n2) to compute Majorityn.

4. (10 points) Let G = (V,E) be a directed graph, with source s ∈ V and sink t ∈ V , and
nonnegative edge capacities. Give a polynomial-time algorithm to decide whether G has a
unique minimum s-t cut, or in other words whether G has an s-t cut of capacity strictly less
than that of all other s-t cuts.
Hint: Consider the residual graph at the termination of the Ford-Fulkerson algorithm, and
define minimum s-t cuts based on this graph in two natural ways. When are these two cuts
actually the same cut?

5. (16 points) Consider the following variant of the minimum cut problem, where instead of two
nodes s and t, we are given an undirected graph with nonnegative edge capacities along with
three distinct vertices s1, s2, s3 called terminals. The goal is to find a cut (i.e., a set of edges)
whose removal separates each si from the other two terminals, i.e., places each of s1, s2, s3

in a different connected component. Let us call such a cut a 3-way cut. Analogous to the



minimum cut problem, we have the problem of computing a 3-way cut of minimum capacity.
This problem studies a natural greedy approach to this problem.

(a) (3 points) Given an undirected graph with nonnegative edge capacities and terminals
s1, s2, s3, define an isolating cut for si to be a cut that separates si from the other two
terminals (but it need not separate those other two terminals). Give a polynomial time
algorithm that finds a minimum capacity isolating cut for si, for i = 1, 2, 3.

(b) Now consider the following greedy heuristic for finding a 3-way cut.

• For each i = 1, 2, 3, find a minimum cost isolating cut, say Ci, for si.
• Let Ci1 and Ci2 be the two cheapest cuts among C1, C2, C3 in terms of their capacity.
• Output Ci1 ∪ Ci2 .

Now to your questions concerning this algorithm:

i. (2 points) Argue that the above algorithm indeed outputs a 3-way cut.
ii. (3 points) Is the following claim true: The above algorithm always returns a 3-way

cut of minimum capacity? Justify your answer.
iii. (8 points) What is the smallest value of the absolute constant α ≥ 1 for which the

following statement is true? : On every 3-way cut instance, the above algorithm
always returns a 3-way cut whose capacity is at most α times the capacity of a
minimum 3-way cut. Prove your answer.


