
CSE 521 Winter 2006

Notes on Hashing

Instructor: Venkatesan Guruswami

1 The Dictionary Data Structure

The dictionary data structure is ubiquitous in computer science. A dictionary holds a set of items
from an ordered universe and supports the operations of inserting an item, deleting an item, and
searching for an item (membership queries). This is the dynamic dictionary problem. If the set of
items is fixed and never changes, we only need to efficiently support membership queries (of the
form “x ∈ S?”), and this is called the static dictionary problem.

The fundamental “time-space” trade-off in any data structures problem is the space needed to
store the data structure, and the time required to perform the operations (such as updates and
answering queries). Let us consider this trade-off for the dictionary data structure.

Let us assume the universe U is the set [N ] = {0, 1, 2, . . . , N − 1}, and we need to store a
subset S ⊆ U of n � N items. A trivial solution is to store a bit array of size N that holds the
characteristic vector of the set. This supports O(1) time operations but has very poor storage. On
the other hand, at the other extreme, we can store the set as a linked list, which has optimal O(n)
storage, but requires Θ(n) time for operations. A binary search tree improves upon both of these
with O(n) storage and O(log n) time operations. For the static problem, a sorted array supports
search in O(log n) time. The logarithmic time is in fact optimal in the comparison model (if only
allowed operations are comparisons between integers). The objective of hashing is to use other
operations on integers and simultaneously achieve optimal O(n) storage as well as O(1) time for
the operations.

2 Hashing to search in O(1) expected time

Let us think about the static problem. To store a set S of n integers, we will use an array/table
T of size m where m = O(n), say m = 2n (any m ≥ (1 + ε)n for ε > 0 will work). For an integer
M , let [M ] denote the set {0, 1, . . . ,M − 1}. We will use a hash function h : [N ] → [m] and store
element x ∈ S in the entry T [h(x)]. Since more than one element can map to the same table entry,
T [i] will in general point to a linked list of all items x′ ∈ S such that h(x′) = i. Since m � N , for
any function h, there will be sets S for which all items map to the same location, and this solution
is no better than the naive linked list one. Since we want to make a claim for worst-case inputs
S, it is clear a deterministic choice of the hash function will not work for us. (Even if the hash
function is cryptographic for which it is hard to find collisions, it will still not give a solution that
works for all input sets S.)

We will pick the hash function at random from a family H of functions. The key property we
would like from H is for collisions (that is, events where x 6= y ∈ S map to the same location
h(x) = h(y) for a random choice h ∈ H) to be rare. If H is the space of all functions from
[N ] → [m], then the probability that h(x) = h(y) for a random h ∈ H is exactly 1/m, for each

1



fixed pair x 6= y. It follows that for u ∈ U and S ⊆ U of size n, the expected time to look for
u is at most O(1 + n/m) = O(1). But we also need to store the hash function h that we used in
the data structure so we can later compute where an item may be stored, and this itself will take
N log m > N space! We therefore look for much smaller families of functions which also guarantee
the above property concerning collisions. This motivates the following definition.

Definition 1 (2-universal hash families) A set H of functions from [N ] to [m] is said to be
2-universal family if for every x, y ∈ [N ], x 6= y,

Pr
h←H

[h(x) = h(y)] ≤ 1/m .

Lemma 1 Let H be a 2-universal hash family with domain [N ] and range [m]. Let S be an arbitrary
subset of [N ] of size at most n and let u ∈ U be arbitrary. Then, for a random choice of h ∈ H,
the expected number of x ∈ S for which h(x) = h(u) is at most n/m.

Proof: Define an indicator r.v Ix for the event h(x) = h(u). The desired random variable Z (that
equals the number of x ∈ S for which h(x) = h(u)) equals

∑
x∈S Ix. By definition of 2-universality,

E[Ix] ≤ 1/m for each x ∈ S. By linearity of expectation E[Z] =
∑

x∈S E[Ix] ≤ |S|/m ≤ n/m. �
Thus if we had a 2-universal family H of size polynomial in N so that we can store a member

of the family in O(1) RAM locations, and we compute h(x) for any member h ∈ H and x ∈ U in
O(1) time (in the RAM model), then in view of the above lemma we can search for an item in O(1)
expected time and using O(n) storage. We can also support insert/delete operations in expected
O(1) time, except that once the size of the set S becomes comparable to m, we will need to rehash.
This leads to an amortized expected insertion time of O(1).

It therefore remains to give such a 2-universal hash family, and we will have a solution to the
dictionary problem with expected O(1) time operations. We turn to this next.

2.1 A simple 2-universal hash family

Lemma 2 Let p be a prime in the range [N, 2N). For a ∈ {1, . . . , p − 1} and b ∈ [p], define the
function ha,b : [N ] → [m] as

ha,b(x) = ((ax + b) mod p) mod m .

The family Hp,m = {ha,b | a ∈ {1, 2, . . . , p − 1}, b ∈ {0, 1, . . . , p − 1}} is a 2-universal hash family.
Note that Hp,m is a family of size O(N2).

Proof: Fix x, y ∈ [N ] with x 6= y. Let us determine the size of the set Cx,y = {(a, b) | ha,b(x) =
ha,b(y)} of hash functions that collide on x, y. We wish to show that |Cx,y| ≤ p(p− 1)/m, so that
the probability of a collision which is equal to |Cx,y|/|Hp,m| = |Cx,y|/(p(p− 1)) is at most 1/m.

The bound on |Cx,y| is immediate from the following two easy claims that hold for each fixed
x 6= y:

• The number of ordered pairs (r, s) ∈ [p]× [p] with r 6= s satisfying r mod m = s mod m is
at most p ·(dp/me−1). Since p is a prime, dp/me ≤ (p+m−1)/m, so the bound p(dp/me−1)
is at most p(p− 1)/m.

• For each pair (r, s) ∈ [p]× [p] with r 6= s, there is a unique pair (a, b) with a ∈ {1, . . . , p− 1}
and b ∈ [p] such that (ax + b) mod p = r and (ay + b) mod p = s. �

2



3 Perfect Hashing: Searching in O(1) worst-case time

The above allowed us to answer membership queries in O(1) expected time. Now we turn to a
method called perfect hashing that gives O(1) search time in the worst-case. We will only focus on
the static problem in this section – the much harder dynamic case will be dealt with later via an
approach different from perfect hashing. Throughout this section S ⊆ [N ] is the fixed set that has
to be stored, and |S| = n.

3.1 Quadratic space solution

We will begin with a very simple quadratic space solution. Let us pick the table size m = n2. Using
an argument identical to Lemma 1, we can show that the expected number X of pairs x 6= y ∈ S
for which h(x) = h(y) taken over a random choice of h ∈ Hp,m is at most

(
n
2

)
/m < 1/2. By Markov

inequality, we have

Pr[X ≥ 1] ≤ E[X]
1

<
1
2

.

Hence, with probability at least 1/2, a random choice of h ∈ Hp,m creates NO collisions, and thus
perfectly hashes S into [m]. We will hence find such a perfect hash function for S within two
random trials in expectation, and when we do, we just store S based on this function, leading to
O(1) worst-case search time.

3.2 Perfect hashing in O(n) space

To reduce the space to O(n), we use a 2-level hashing scheme. The idea is to first hash using a
function h in Hp,m to a table T of size m with m = O(n), say m = 2n. If nj elements of S fall into
location T [j] for j = 0, 1, . . . ,m, then these are further hashed using a perfect hash function hj

from Hp,mj to a second level table of size mj where mj = n2
j (which is found using the method of

Section 3.1). The rationale is that we do not expect too many collisions after the first hashing, i.e.,
nj should be much smaller than n, and so we incur the quadratic cost for a much smaller subset of
S. The below calculation makes this precise.

Since all collisions are resolved by the second hash, and each of the hash functions h and
{hj | j ∈ [m]} can be computed in O(1) time this indeed enables searching in O(1) time. Each h
and hj can be stored in O(1) space, the first hash table has size m = O(n), so the expected space
usage equals

O(n) +
m−1∑
j=0

E[n2
j ] = O(n) +

m−1∑
j=0

E
[
nj + 2

(
nj

2

)]
= O(n) + 2E[Y ] . (1)

where Y is the random variable measuring the number of collisions of h. If for x 6= y ∈ S, Ix,y

is indicator random variable for the event h(x) = h(y), then E[Ix,y] ≤ 1/m (by 2-universality of
Hp,m) and Y =

∑
x,y Ix,y. Therefore, E[Y ] ≤

(
n
2

)
/m ≤ n/2. Using this in (1), we conclude that the

expected storage is O(n). By Markov inequality, for a random choice of h, we have Y = O(n) with
probability at least 1/2, so we can simply try (an expected O(1) times) till we find a hash function
h with O(n) collisions and hence the resulting 2-level table has size O(n).

3.3 Dynamic Perfect Hashing

It is possible to use perfect hashing to solve the dynamic dictionary problem with O(1) insert/delete
time with high probability (and O(1) worst-case search time). This scheme is quite complicated.

3



Instead, we will present in class a different approach called “Cuckoo Hashing” introduced by Pagh
and Rodler in 2001 (yes, it is quite recent!). It is cleaner and simpler than previous dynamic
dictionaries and it does not use perfect hashing. It uses two hash tables, and each element is stored
in its hash location in one of them. Cuckoo hashing achieves O(1) expected time for updates and
O(1) worst-case time for membership queries.

4


