
CSE 521: Design and Analysis of Algorithms Autumn 2006
Problem Set #3 Instructor: Anna Karlin
Due on November 7, 2006

Turn-in: You can either bring the homework to class or email your homework to Roee or leave
it in his mailbox on the first floor of the Allen Center (in the room with all the CSE grad student
mailboxes).

Instructions: You are allowed to collaborate with fellow students taking the class in solving
problem sets. You may also collaborate with one other classmate on writing up your solutions. If
you do collaborate in any way, you must acknowledge for each problem the people you worked with
on that problem.

The problems have been carefully chosen for their pedagogical value and hence might be similar
or identical to those given out in past offerings of this course at UW, or similar courses at other
schools. Using any pre-existing solutions from these sources, from the Web or other algorithms
textbooks constitutes a violation of the academic integrity expected of you and is strictly prohibited.

Most of the problems require only one or two key ideas for their solution – spelling out these
ideas should give you most of the credit for the problem even if you err in some finer details. So,
make sure you clearly write down the main idea(s) behind your solution even if you could not figure
out a complete solution.

A final important piece of advice: Begin work on the problem set early and don’t wait till the
deadline is only a few days away.

Readings: Kleinberg and Tardos: Chapter 7

Each problem is worth 10 points unless noted otherwise. All problem numbers refer to the
Kleinberg-Tardos textbook.

1. Chapter 6, Problem 8

2. Chapter 6, Problem 23

3. Let Σ be a finite alphabet. For two strings x, y ∈ Σ∗, define the Insert-Delete distance between
x and y, denoted ID(x, y), to be the minimum number of insertions and deletions needed to
convert x to y. For example if Σ = {a, b, c}, x = abbc and y = bbac, then ID(x, y) = 2 (we
delete the first a and insert an a before the last c).

(a) Give a polynomial time algorithm that on input two strings x, y, computes the distance
ID(x, y) as well as a sequence of ID(x, y) insert/delete operations that can be used to
convert x to y.

(b) Let us say that a string p = p1p2 . . . pk ∈ Σk is a substring of z = z1z2 . . . zn ∈ Σn if there
exist a sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that for all j, 1 ≤ j ≤ k,
we have zij = pj. The longest common substring (LCS) of two strings x, y is the largest
sequence L such that L is a substring of both x and y. Likewise, the shortest common

superstring (SCS) of two strings x, y is the smallest sequence L such that both x and y
are substrings of L.



Design a polynomial time algorithm to find the LCS and SCS of two given strings. (Hint:
It may be useful to figure out how, for two strings x, y, the quantities ID(x, y), length of
LCS(x, y), and length of SCS(x, y) are related.)

4. State whether the following statements are True of False, and justify your answer.

(a) Let G = (V,E) be a directed graph. Let a, b, c ∈ V be three distinct vertices such that in
the graph G there exist k mutually edge-disjoint paths from a to b, as well as k mutually
edge-disjoint paths from b to c. Then there also exist k mutually edge-disjoint paths
between a and c.

(b) Consider the following “Forward-Edge Only” algorithm for computing s-t flows. The
algorithm runs in a sequence of augmentation steps till there is no s-t path in the residual
graph, except that we use a variant of the residual graph that only includes the forward

edges. In other words, the algorithm searches for s-t paths in a graph G̃f consisting
only of edges e for which f(e) < c(e), and terminates when there is no augmenting path
consisting entirely of such edges. Note that we do not prescribe how this algorithm
chooses its forward-edge paths, it may choose them in any fashion it wants, provided
that it terminates only when there are no forward-edge paths.

Now to our claim: On every instance of the Maximum Flow problem, the forward-
edge only algorithm returns a flow with value at least 1/4 of the maximum-flow value
(regardless of how it chooses it forward-edge paths).

5. Chapter 7, Problem 23

6. In this exercise, the goal is to develop a method to find augmenting paths that always com-
putes the maximum flow using a number of augmentations that is independent of the edge
capacities and depends only on the number of vertices and edges in the graph. This yields what
is called a strongly polynomial time algorithm for computing maximum flow. The method is
a very natural one: at each step, we perform a BFS on the residual graph from the source s
till we reach t (if we never reach t, we stop the algorithm and output the flow), and augment
flow along the s-t path in the BFS tree. In other words, we augment flow along the shortest
path possible in each iteration. Let us call such an augmentation the BFS-augmentation.

(a) Let f be a s-t flow on a network G = (V,E) with source s and sink t. Suppose we perform
a BFS-augmentation on f to compute a new flow f ′. Prove that, for each v ∈ V −{s, t},
the shortest path distance df ′(s, v) from s to v in the residual graph Gf ′ is not smaller
than the shortest path distance df (s, v) from s to v in Gf . (Here, we measure distance
in residual graphs in terms of the number of hops, i.e., each edge in the residual graph
has unit distance.)

(b) Suppose we run the Ford-Fulkerson algorithm performing a BFS-augmentation at each
augmentation step. Let u, v ∈ V − {s, t}. Prove that if the edge (u, v) is the bottleneck
link on the chosen augmenting path in Gf when augmenting flow f and it is again, at a
later point, the bottleneck link when augmenting flow f ′, then df ′(s, u) ≥ df (s, u) + 2.

(c) Prove that the version of the Ford-Fulkerson algorithm where we perform a BFS-augmentation
at each step terminates and outputs a maximum flow after only O(|V ||E|) augmenta-
tions, independent of the edge capacities.


