
CSE 521: Design and Analysis of Algorithms Autumn 2006
Take Home Midterm Instructor: Anna Karlin
Due on November 16, 2006 in class.

Instructions: This is a take home exam with the following rules and instructions:

• The work you turn in should be entirely your own. You are not allowed to collaborate or
discuss the problems, solutions, or any aspect relating to this exam with your classmates, or
anyone else. If you have some difficulty following any of the questions or think something is
ambiguous, send an email to the course instructor/TA.

• You are ONLY permitted to refer to the Kleinberg-Tardos text, your class notes and solutions
to previous problem sets. Reference to any other source will be considered an act of academic
dishonesty.

• On all the problems, give the running time of your algorithm. Also, be sure to prove that
your algorithm is correct.

• Devote sufficient time for writing your solutions in a clear manner. We are looking for
correctness, precision and clarity of exposition.

• If for some reason you cannot make it to class on Thursday, Nov 16, make prior arrangements
with us to turn in your exam before class that day.

Questions:

1. (20 points) Alice wants to throw a party and is deciding who to call. She has n people to
choose from, and she has made up a list of which pairs of these people know each other.
She wants to pick as many people as possible, subject to two constraints: at the party, each
person should have at least five other people that they know and five other people that they
don’t know.

Give an efficient algorithm that takes as input the list of n people and the list of pairs who
know each other and outputs the best choice of party invitees.

2. (30 points) An array A[1..n] is said to have a majority element if more than half of its entries
are the same. Given an array, the task is to design an efficient algorithm to tell whether
the array has a majority element, and, if so, to find that element. The elements of the
array are not necessarily from some ordered domain like the integers, and so there can be no
comparisons of the form “is A[i] > A[j]?”. (Think of the array elements as GIF files, say.)
However, you can answer questions of the form: “is A[i] = A[j]?” in constant time.

(a) (15 points) Show how to solve this problem in O(n log n) time. (Hint: Split the array
A into two arrays A1 and A2 of half the size. Does knowing the majority elements
of A1 and A2 help you figure out the majority element of A?. If so, you can use a
divide-and-conquer approach.)

(b) (15 points) Give a linear time algorithm. (Hint: Try a divide-and-conquer approach
based on pairing up the elements and using that pairing to eliminate elements.)



3. (25 points) Consider the following game: A “dealer” produces a sequence s1, . . . , sn of “cards”,
face up, where each card si has value vi. Then two players take turns picking a card from the
sequence, but can only pick the first or the last card of the (remaining) sequence. The goal
is to collect cards of largest total value. (For example, you can think of the cards as bills of
different denominations.) Assume n is even.

(a) (5 points) Show a sequence of cards such that it is not optimal for the first player to start
by picking up the available card of larger value. That is, the natural greedy strategy is
suboptimal.

(b) (20 points) Give an O(n2) algorithm to compute an optimal strategy for the first player.
Given the initial sequence, your algorithm should precompute in O(n2) time some infor-
mation, and then the first player should be able to make each move optimally in O(1)
time by looking up the precomputed information.

4. (25 points) A variation on change-making:

Given an unlimited supply of coins of denominations x1, x2, . . . , xn, we wish to make change
for a value v using at most k coins. (All the xi’s are integers and v is an integer as well.)
That is, we wish to find a set of at most k coins whose total value is v. This might not be
possible: for instance, if the denominations are 5 and 10 and k = 6, then we can make change
for 55 but not for 65. Give an efficient dynamic programming algorithm (as a function of n,
k and v) for the following problem:

Given x1, . . . , xn, k and v: is it possible to make change for v using at most k coins, of
denominations x1, . . . , xn?

What is the running time of your algorithm?


