CSE 521: Design and Analysis of Algorithms
Assignment \#9
Due: Wednesday, March 10

Reading: from Williamson, see my email.
Problems: do all of the following problems.

1. Consider an arbitrary optimization problem, say a minimization problem, that can be formulated as an integer program (e.g., minimum vertex cover or travelling salesman, or any minimization problem in NP), and let I represent an instance (input) for this problem.

Consider the value of

$$
\sup _{I} \frac{O P T(I)}{O P T F R A C T(I)},
$$

where $\operatorname{OPT}(I)$ is the value of the optimal solution to the problem (i.e., the optimal solution of the integer program) on instance I, and $\operatorname{OPTFRACT(I)}$ is the value of the optimal fractional solution to the problem on instance I (i.e., the optimal solution of the linear programming relaxation). This quantity is called the integrality gap of the LP relaxation.

- Show that the integrality gap for the vertex cover problem is at least 2.
- Discuss whether or not it is possible for an approximation algorithm designed using an LP relaxation to achieve a better approximation guarantee than the integrality gap of the relaxation.

2. Prove theorem 2.3 (page 15) in Williamson's notes.
3. Consider the set multicover problem: The input is

- a universe U of n elements and a value r_{e} for each element $e \in U$;
- a collection \mathcal{S} of subsets of U, and a $\operatorname{cost} c(S)$ associated with each set $S \in \mathcal{S}$.

The goal is to pick a subset of the sets in \mathcal{S} (we allow a set to be chosen multiple times) such that for each element $e \in U, e$ is covered at least r_{e} times and such that the sum of the costs of the selected sets is minimized.

- Write down an integer programming formulation of this problem.
- Write down the dual of the linear programming relaxation.
- Give an $O(\log n)$ factor randomized rounding algorithm for the set multicover problem. Your algorithm should have the property that the probability that the algorithm fails to output a valid multicover is at most n^{-c} for some constant $c>0$. Be sure to show the details of your analysis.
You can use the simple fact that if $p_{1}, p_{2}, \ldots, p_{k}$ are probabilities such that $\sum_{1 \leq i \leq k} p_{i} \geq 1$, then $\prod_{1 \leq i \leq k}\left(1-p_{i}\right)$ is maximized when all the p_{i} 's are equal to $1 / k$. (I'm giving this to you in case you've forgotten elementary calculus.)

