
CSE 521: Design and Analysis of Algorithms
Assignment #1
Jan 7, 2004
Due: Wednesay, January 14

Reading Assignment: Kleinberg and Tardos, Chapters 1 and 2.

Problems:

1. Consider a town with n men and n women seeking to get married to one another. Each
man has a preference list that ranks all the women, and each woman has a preference
list that ranks all the men.

The set of all 2n people is divided into two categories: good people and bad people.
Suppose that for some number k, 1 ≤ k ≤ n − 1, there are k good men and k good
women; thus there are n − k bad men and n − k bad women.

Everyone would rather marry any good person than any bad person. Formally, each
preference list has the property that it ranks each good person of the opposite gender
higher than each bad person of the opposite gender: its first k entries are the good
people (of the opposite gender) in some order, and its next n − k are the bad people
(of the opposite gender) in some order.

(a) Show that there exists a stable matching in which every good man is married to
a good woman.

(b) Show that in every stable matching, every good man is married to a good woman.

2. We can think about a different generalization of the stable matching problem, in which
certain man-woman pairs are explicitly forbidden. In the case of employers and ap-
plicants, picture that certain applicants simply lack the necessary qualifications or
degree; and so they cannot be employed at certain companies, however desirable they
may seem. Concretely, we have a set M of n men, a set W of n women, and a set
F ⊆ M × W of pairs who are simply not allowed to get married. Each man m ranks
all the women w for which (m, w) 6∈ F , and each woman w′ ranks all the men m′ for
which (m′, w′) 6∈ F .

In this more general setting, we say that a matching S is stable if it does not exhibit
any of the following types of instability.

(i) There are two pairs (m, w) and (m′, w′) in S with the property that m prefers w′

to w, and w′ prefers m to m′. (The usual kind of instability.)

(ii) There is a pair (m, w) ∈ S, and a man m′, so that m′ is not part of any pair in the
matching, (m′, w) 6∈ F , and w prefers m′ to m. (A single man is more desirable
and not forbidden.)



(ii′) There is a pair (m, w) ∈ S, and a woman w′, so that w′ is not part of any pair
in the matching, (m, w′) 6∈ F , and m prefers w′ to w. (A single woman is more
desirable and not forbidden.)

(iii) There is a man m and a woman w, neither of which is part of any pair in the
matching, so that (m, w) 6∈ F . (There are two single people with nothing prevent-
ing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be a perfect
matching.

Now we can ask: for every set of preference lists and every set of forbidden pairs, is
there always a stable matching? Resolve this question by doing one of the following
two things: (a) Giving an algorithm that, for any set of preference lists and forbidden
pairs, produces a stable matching; or (b) Giving an example of a set of preference lists
and forbidden pairs for which there is no stable matching.

3. There are many other settings in which we can ask questions related to some type of
“stability” principle. Here’s one, involving competition between two enterprises.

Suppose we have two television networks; let’s call them AOL-Time-Warner-CNN and
Disney-ABC-ESPN, or A and D for short. There are n prime-time programming slots,
and each network has n TV shows. Each network wants to devise a schedule — an
assignment of each show to a distinct slot — so as to attract as much market share as
possible.

Here is the way we determine how well the two networks perform relative to each
other, given their schedules. Each show has a fixed Nielsen rating, which is based on
the number of people who watched it last year; we’ll assume that no two shows have
exactly the same rating. A network wins a given time slot if the show that it schedules
for the time slot has a larger rating than the show the other network schedules for that
time slot. The goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a schedule S and
Network D reveals a schedule T . On the basis of this pair of schedules, each network
wins certain time slots, according to the rule above. We’ll say that the pair of schedules
(S, T ) is stable if neither network can unilaterally change its own schedule and win more
time slots. That is, there is no schedule S ′ so that Network A wins more slots with the
pair (S ′, T ) than it did with the pair (S, T ); and symmetrically, there is no schedule
T ′ so that Network D wins more slots with the pair (S, T ′) than it did with the pair
(S, T ).

The analogue of Gale and Shapley’s question for this kind of stability is: For every
set of TV shows and ratings, is there always a stable pair of schedules? Resolve this
question by doing one of the following two things: (a) Giving an algorithm that, for
any set of TV shows and associated ratings, produces a stable pair of schedules; or (b)
Giving an example of a set of TV shows and associated ratings for which there is no
stable pair of schedules.



4. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships, and provides
service to n ports. Each of its ships has a schedule which says, for each day of the
month, which of the ports it’s currently visiting, or whether it’s out at sea. (You can
assume the “month” here has m days, for some m > n.) Each ship visits each port
for exactly one day during the month. For safety reasons, PSL Inc. has the following
strict requirement:

(†) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this month, via the
following scheme. They want to truncate each ship’s schedule: for each ship Si, there
will be some day when it arrives in its scheduled port and simply remains there for the
rest of the month (for maintenance). This means that Si will not visit the remaining
ports on its schedule (if any) that month, but this is okay. So the truncation of Si’s
schedule will simply consist of its original schedule up to a certain specified day on
which it is in a port P ; the remainder of the truncated schedule simply has it remain
in port P .

Now the company’s question to you is the following: Given the schedule for each ship,
find a truncation of each so that condition (†) continues to hold: no two ships are ever
in the same port on the same day.

Show that such a set of truncations can always be found, and give an efficient algorithm
to find them.

Example: Suppose we have two ships and two ports, and the “month” has four days.
Suppose the first ship’s schedule is

port P1; at sea; port P2; at sea

and the second ship’s schedule is

at sea; port P1; at sea; port P2

Then the (only) way to choose truncations would be to have the first ship remain in
port P2 starting on day 3, and have the second ship remain in port P1 starting on day
2.

5. (*)

For this problem, we will explore the issue of truthfulness in the stable matching prob-
lem, and specifically in the Gale-Shapley algorithm. The basic question is: Can a man
or a woman end up better off by lying about his or her preferences? More concretely,
we suppose each participant has a true preference order. Now consider a woman w.
Suppose w prefers man m to m′, but both m and m′ are low on her list of preferences.
Can it be the case that by switching the order of m and m′ on her list of preferences
(i.e., by falsely claiming that she prefers m′ to m) and running the algorithm with this
false preference list, w will end up with a man m′′ that she truly prefers to both m and



m′? Similarly, can a man end up with a better partner by falsely switching the order
of women on his preference list?

Resolve both questions by doing one of the following two things in each case:

(a) Giving a proof that, for any set of preference lists, switching the order of a pair on
the list cannot improve a man’s [woman’s] partner in the Gale-Shapley algorithm; or

(b) Giving an example of a set of preference lists for which there is a switch that would
improve the partner of a man [woman] who switched preferences.


