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Competitive Analysis of List Update
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On-Line List Update

• Maintain a list L with operations
– Access(x) – find x in the list

– Insert(x) – insert x into the list

– Delete(x) – delete x from the list

• Assumptions
– Operations arrive on-line with no knowledge of 

future operations

– Search always from beginning of list with cost for 
search

– List can be reorganized at cost 
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List Access Algorithms

• MF – Move-to-front
– On accessing x, move x to front of list

• T - Transpose
– On accessing x, move x one closer to front

• FC – Frequency Count
– Keep the members of the list in frequency count 

order
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Examples

x1, x2, x3, x4

Access(x3)
x1, x2, x3, x4MF x3, x1, x2, x4

Move-to-front

x1, x2, x3, x4

Access(x3)
x1, x2, x3, x4T x1, x3, x2, x4

Move closer

x1, x2, x3, x4

Access(x3)
x1, x2, x3, x4FC x1, x3, x2, x4

Update FC

5  3   3    2 5  3   4    2 5  4   3    2
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Why These Algorithms

• These algorithms appear to be good ways to 
maintain a list to minimize access cost.

• How well they perform compared to an 
optimal off-line algorithm has a very 
interesting theory.
– No obvious optimal algorithm

– Analysis can be done anyway using potential 
functions and amortized analysis.

• Application of MF in data compession - BZIP
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Cost Model
• Search cost

– Cost = distance from front of the list to where item 
is located

• Transposition cost
– Free 

• Accessed item is moved closer to the front of 
the list. These transpositions are free because 
we can insert anywhere we have already 
accessed

– Paid
• All other movements of items cost of 1 for each 

transposition.
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Examples

x1, x2, x3, x4 x1, x2, x3, x4MF x3, x1, x2, x4

x1, x2, x3, x4 x1, x2, x3, x4T x1, x3, x2, x4

x1, x2, x3, x4 x1, x2, x3, x4FC x1, x3, x2, x4

5  3   3    2 5  3   4    2 5  4   3    2

3

3

3

0

0

0

x1, x2, x3, x4 x1, x2, x3, x4A x3, x2, x1, x4
2 1

paid transpositions
x1 and x2 change

search

CSE 521 - List Access Analysis - Spring 2003 8

Optimal Off-line Algorithm

• Given a finite sequence � of operations 
(access, insert, delete). The optimal off-line 
algorithm is one with minimum cost.  
– Uses same cost model.
– Complete knowledge of the input sequence.

– The optimal algorithm may require an exponential 
search to find the minimum.
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Example

L = x1, x2, x3

Accesses x3, x2, x3, x2

x1, x3, x2 x2, x1, x3 x2, x3, x1x1, x2, x3 x3, x1, x2 x3, x2, x1

3
3 4 4 3

4

2

1
8 total cost is optimal

1
x2, x3, x1

x2, x3, x1

x2, x3, x1
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Notation

• ALG(�)
– Cost of all operations of ALG on input �

• ALGC(�)
– Cost of all operations except for paid transpositions

• ALGP(�)
– Number of paid transpositions

• ALGF(�)
– Number of free transpositions

Note ALG(�) = ALGC(�) for ALG = MF, T, FC since all 
use no paid transpositions
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MTF Analysis

• Theorem: Let n =|�|
MF(�) < 2 OPTC(�) + OPTP(�) - OPTF(�) – n

• Corollary: 
MF(�) < 2 OPT(�) 

because OPT(�)  = OPTC(�) + OPTP(�) 
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Potential Function

• �i = number of inversions in MTF’s list 
relative to OPT’s list after i operations of �
completed.

• Example � = x3, x2, x3, x2

– Initial configuration L = x1, x2, x3

– MTF  x1, x2, x3 � x3, x1, x2  � x2, x3, x1 � x3, x2, x1

– OPT  x1, x2, x3 � x2, x3, x1  � x2, x3, x1 � x2, x3, x1

– �i 0               2                   0               1
– i              0               1                    2           3
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Amortized Cost

• Amortized cost:
ai = ti + �i - �i-1
where ti is the cost of the i-th step of MTF

�ai = � ti + �n - �0

MF(�) = � ti = �ai + �0 - �n

MF(�) < �ai because �0 = 0.
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Main Claim

• For step i, ai < (2Si-1) + Pi – Fi where
– Si is the search cost of the optimal algorithm in the 

i-th step 

– Pi is the number of paid transpositions in the 
optimal algorithm in the i-th step

– Fi is the number of free transpositions in the 
optimal algorithm in the i-th step

• This yields the theorem.
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Access(xj) Analysis

• xj is in location j in OPT’s list.
• xj in location k in MTF’s list.
• Red items are to left in MTF’s list, but to right 

on OPT’s list.  These are inversions relative 
to xj. 

xjMTF

xjOPT

k

j

1

1
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Access(xj) Analysis

• Suppose v inversions relative to xj

• k - 1 – v items are not inversions.

• k - 1 – v < j – 1 because non inversions must be to 
left of xj in OPT’s list.

• Before OPT processes the request MTF removes v 
inversions and introduces k-1-v inversions.

• Before OPT processes the request we have
ai = ti + �i - �i-1 = k + (k-1-v) – v = 2(k-v) –1

< 2j-1 
= 2Si - 1
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Access(xj) Analysis

xjMTF

xjOPT

k

j

1

1

xjMTF

k1

v is the amount of red
k - 1 – v < j – 1
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Access(xj) Analysis

• OPT
Si = j search cost

< Pi inversions for paid transpositions made by OPT

= -Fi inversions for free transpositions made by OPT

• Summarizing 
ai = ti + �i - �i-1 < 2Si + Pi – Fi –1

• Analysis of Insert and Delete is similar.
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T and FC not Competitive

• T- Always access last item on list
– Let m be the length of the list.

– Every two accesses take 2m access time.

– xm and xm-1 just exchange places

• Better algorithm
– In the first access move the last two items to the 

front of the list.

– From this moment on every two accesses cost 3.

• FC has a similar bad sequence.
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Notes

• Competitive Analysis can be done without 
knowledge of the optimal algorithm or good 
bound on the optimal.
– Pioneered by Sleator and Tarjan (1985) in CACM!

• Neither FC nor T are competitive.


