
1

1

CSE 521 - Algorithms

On-line Algorithms

Thanks to Tami Tamir

2

Introduction
Online Algorithms are algorithms that need to
make decisions without full knowledge of the
input. They have full knowledge of the past
but no (or partial) knowledge of the future.

For this type of problem we will attempt to
design algorithms that are competitive with
the optimum offline algorithm, the algorithm
that has perfect knowledge of the future.

3

The Ski-Rental Problem

• Assume that you are taking ski lessons.
After each lesson you decide (depending on
how much you enjoy it, and what is your
bones status) whether to continue to ski or to
stop totally.

• You have the choice of either renting skis for
1$ a time or buying skis for y$.

• Will you buy or rent?

4

The Ski-Rental Problem

• If you knew in advance how many times t
you would ski in your life then the choice
of whether to rent or buy is simple. If you
will ski more than y times then buy
before you start, otherwise always rent.

• The cost of this algorithm is min(t, y).
• This type of strategy, with
perfect knowledge of the future,
is known as an offline strategy.

5

The Ski-Rental Problem
• In practice, you don't know how many times

you will ski. What should you do?
• An online strategy will be a number k such

that after renting k-1 times you will buy skis
(just before your kth visit).

• Claim: Setting k = y guarantees that you
never pay more than twice the cost of the
offline strategy.

• Example: Assume y=7$ Thus, after 6 rents,
you buy. Your total payment: 6+7=13$.

6

The Ski-Rental Problem

Theorem: Setting k = y guarantees that you never pay
more than twice the cost of the offline strategy.

Proof: when you buy skis in your kth visit, even if you
quit right after this time, t � y.

• Your total payment is k-1+y =2y-1.

• The offline cost is min(t, y) = y.
• The ratio is (2y-1)/y = 2-1/y. �

We say that this strategy is (2-1/y)-competitive.

2

7

Competitive Ratio

• An on-line algorithm A is c-competitive if
there is a constant b for all sequences s
of operations

A(s) < c OPT(s) + b
where A(s) is the cost of A on the
sequence s and OPT(s) is the optimal
off-line cost for the same sequence.

• Competitive ratio is a worst case bound.

8

The Ski-Rental Problem
Is there a better strategy?

• Let k be any strategy (buy after k-1 rents).

• Suppose you buy the skis at the kth time and then break
your leg and never ski again.

• Your total ski cost is k-1+y and the optimum offline cost
is min(k,y).

• For every k, the ratio (k-1+y)/min(k,y) is at least (2-1/y)

• Therefore, every strategy is at least (2-1/y)- -competitive.
�

9

The Ski-Rental Problem

The general rule:

When balancing small incremental costs
against a big one-time cost, you want to
delay spending the big cost until you
have accumulated roughly the same
amount in small costs.

10

The Lost Cow Problem

Old McDonald lost his favorite cow. It was
last seen marching towards a junction
leading to two infinite roads. None of
the witnesses can say if the cow picked
the left or the right route.

11

The Lost Cow Problem

Old McDonald’s algorithm:

1. d=1; current side = right

2. repeat:
i. Walk distance d on current side

ii. if find cow then exit

iii. else return to starting point

iv. d = 2d

v. Flip current side

12

The Lost Cow Problem

Theorem: Old McDonald’s algorithm is 9-
competitive.

In other words: The distance that Old
McDonald might pass before finding the cow
is at most 9 times the distance of an optimal
offline algorithm (who knows where the cow
is).

���

���

3

13

The Lost Cow Problem

Theorem: Old McDonald’s algorithm is 9-competitive.

Proof:The worst case is that he finds the cow a little
bit beyond the distance he last searched on this side
(why?).

Thus, OPT = 2j + � where j = # of iterations and � is
some small distance. Then,

Cost OPT = 2j + � > 2j

Cost ON = 2(1 + 2 + 4 + … + 2j+1) + 2j + �

= 2�2j+2 + 2j + � = 9�2j + � < 9 � Cost OPT �

14

Edge Coloring

• An Edge-coloring of a graph G=(V,E) is an assignment,
c, of integers to the edges such that if e1 and e2 share an
endpoint then c(e1) � c(e2).

• Let � be the maximal degree of some vertex in G.
• In the offline case, it is possible to edge-color G using �

or �+1 colors (� colors are necessary and it is NP-hard
to determine whether �+1 are required).

• Online edge coloring: The graph is not known in
advance. In each step a new edge is added and we
need to color it before the next edge is known.

15

Optimal Online Algorithm for Edge
Coloring

- We color the edges with numbers 1,2,3…

- Let e=(u,v) be a new edge.

Color e with the smallest color which is not used by any
edge adjacent to u or v.

Claim: The algorithm uses at most 2�-1 colors.
Proof outline (was hw6 q.1): assume we need the color

2�. It must be that all the colors 1,2,…,2�-1 are used
by edges adjacent to u or v. Therefore, either u or v
has � adjacent edges, excluding e, contradicting the
definition of �.

� �
16

Online Edge Coloring
Claim: Any deterministic algorithm needs at least 2�-1

colors.
Proof: Assume there is an algorithm that uses only 2�-2

colors. Given � we add to the graph many (�-1)-stars.

There is a finite number of ways to edge-color a (�-1)-star
with colors from {1,2,…,2�-2}, so at some point we must
have � stars, all colored with the the same set of �-1
colors.

	
�� ���
�

���

17

Online Edge Coloring

��

��

��

��

��

� stars, all
colored with
the the same
set of �-1
colors. ��

Let v1,v2,…,v� be the centers of these stars.

We are ready to shock the algorithm!.

We add a new vertex, a, and � edges (a-v1), …,(a,v�).
Each new edge must have a unique color (why?), that
is not one of the (�-1) colors used to color the stars
(why?) à 2�-1 colors must be used.

Note: the maximal degree is �
18

Online Scheduling and Load Balancing

Problem Statement:

• A set of m identical machines,

• A sequence of jobs with processing times p1, p2,….

• Each job must be assigned to one of the machines.

• When job j is scheduled, we don’t know how many
additional jobs we are going to have and what are their
processing times.

Goal: schedule the jobs on machines in a way that
minimizes the makespan = max i �j on Mi pj .

(the maximal load on one machine)

4

19

Online Scheduling and Load Balancing

List Scheduling [Graham 1966]:

A greedy algorithm: always schedule a job on the
least loaded machine.

Example: m=3 � = 7 3 4 5 6 10

M3

M2

M1 7

3

4

5

6

10

Makespan = 17

Online Scheduling and Load Balancing

Theorem: List- Scheduling is (2-1/m)- competitive.

Proof: Let Hj denote the last completion time on the jth

machine. Let k be the job that finishes last and
determines CLS.

All the machines are busy when j starts its processing,
thus, �j, Hj � CLS - pk.

For at least one machine (that processes k) Hj = CLS .

CLS – pk CLS

pk

à �i pi = �j Hj � (m-1) (CLS – pk)+ CLS.

à �i pi +(m-1)pk � mCLS.

à CLS 	 1/m �i pi +

pk (m-1)/m.

21

Online Scheduling and Load Balancing

à CLS 	 1/m �i pi + pk (m-1)/m.

Consider an optimal offline schedule.

Copt � maxi pi � pk (some machine must process the

longest job).

Copt � 1/m �i pi (if the load is perfectly balanced).

Therefore,

CLS 	 Copt + Copt (m-1)(m) = (2-1/m) Copt.

22

Online Scheduling

Are there any better algorithms?

Not significantly. Randomization do help.

---1.5821.9231.852

1.661.461.751.7331.7314

1.551.421.6671.6671.6663

1.3341.3341.51.51.52

upper
bound

lower
bound

LSupper
bound

lower
bound

m

randomizeddeterministic

23

A lower Bound for Online Scheduling

Theorem: For m=2, no algorithm has r< 1.5

Proof: Consider the sequence � = 1,1,2.

If the first two jobs are scheduled on different machines, the
third job completes at time 3.

2
1

3
m1
m2 1 2

3m1
m2

CA=3, Copt=2

r=3/2

If the first two jobs are scheduled on the same
machine, the adversary stops.

21
m1
m2 2

1m1
m2

CA=2, Copt=1

r=2

alg opt

alg opt
24

Paging- Cache Replacement Policies

Problem Statement:

•There are two levels of memory:

– fast memory M1 consisting of k pages (cache)

– slow memory M2 consisting of n pages (k < n).

• Pages in M1 are a strict subset of the pages in M2.

• Pages are accessible only through M1 .

• Accessing a page contained in M1 has cost 0.

• When accessing a page not in M1, it must first be
brought in from M2 at a cost of 1 before it can be
accessed. This event is called a page fault.

5

25

Paging- Cache Replacement Policies

Problem Statement (cont.):

If M1 is full when a page fault occurs, some

page in M1 must be evicted in order to make room in
M1.

How to choose a page to evict each time a
page fault occurs in a way that minimizes the

total number of page faults over time?

26

Paging- An Optimal Offline Algorithm

Algorithm LFD (Longest-Forward-Distance)

An optimal off-line page replacement strategy.

On each page fault, replace the page in M1

that will be requested farthest out in the future.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

a
b
d

a
b
d

e
b
d

a
b
d

e
b
d

e
b
d

e
b
d

c
b
d

c
b
d

c
a
d

c
a
d

* * * *
4 cache misses in LFD

27

Paging- An Optimal Offline Algorithm

A classic result from 1966:

LFD is an optimal page replacement policy.

Proof idea: For any other algorithm A, the cost
of A is not increased if in the 1st time that A
differs from LFD we evict in A the page that is
requested farthest in the future.

However, LFD is not practical.

It is not an online algorithm!
28

Online Paging Algorithms
FIFO: first in first out: evict the page that was entered
first to the cache.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

d
b
c

d
a
c

e
a
b

d
a
b

e
d
b

e
d
b

e
d
b

e
d
c

e
d
c

a
d
c

a
d
c

* * * * * * *

Theorem: FIFO is k-competitive: for any
sequence, #misses(FIFO) 	 k #misses (LFD)

7 cache
misses
in FIFO

29

Online Paging Algorithms
LIFO: last in first out: evict the page that was entered
last to the cache.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

a
b
d

a
b
d

a
b
e

a
b
d

a
b
d

a
b
e

a
b
e

a
b
c

a
b
c

a
b
c

a
b
d

* * * * * *

Theorem: For all n>k, LIFO is not competitive:
For any c, there exists a sequence of requests
such that #misses(FIFO) � c #misses (LFD)

6 cache
misses
in LIFO

30

Online Paging Algorithms
LRU: least recently used: evict the page with the
earliest last reference.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , d , e , d , e , b , c
a
b
c

d
b
c

d
a
c

d
a
b

d
a
b

d
e
b

d
e
b

d
e
b

d
e
b

c
e
b

* * * * *

Theorem: LRU is k-competitive

6

31

Paging- a bound for any deterministic
online algorithm

Theorem: For any k and any deterministic on-line

algorithm A, the competitive ratio of A � k.

Proof: Assume n= k+1 (there are k+1 distinct pages).

What will the adversary do?

Always request the page that is not currently in M1

This causes a page fault in every access. The total cost
of A is |�|.

32

Paging- a bound for any deterministic
online algorithm

What is the price of LFD in this sequence?

•At most a single page fault in any k accesses

(LFD evicts the page that will be needed in the k+1th

request or later)

•The total cost of LFD is at most |�|/k.

Therefore: Worst-case analysis is not so important in
analyzing paging algorithm

•Can randomization help? Yes!!

