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CSE 521 - Algorithms

On-line Algorithms

Thanks to Tami Tamir
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Introduction
Online Algorithms are algorithms that need to 
make decisions without full knowledge of the 
input. They have full knowledge of the past 
but no (or partial) knowledge of the future. 

For this type of problem we will attempt to 
design algorithms that are competitive with 
the optimum offline algorithm, the algorithm 
that has perfect knowledge of the future. 
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The Ski-Rental Problem

• Assume that you are taking ski lessons. 
After each lesson you decide (depending on 
how much you enjoy it, and what is your 
bones status) whether to continue to ski or to 
stop totally. 

• You have the choice of either renting skis for 
1$ a time or buying skis for y$.

• Will you buy or rent?
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The Ski-Rental Problem

• If you knew in advance how many times t 
you would ski in your life then the choice 
of whether to rent or buy is simple. If you 
will ski more than y times then buy 
before you start, otherwise always rent. 

• The cost of this algorithm is min(t, y).
• This type of strategy, with 
perfect knowledge of the future, 
is known as an offline strategy.
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The Ski-Rental Problem
• In practice, you don't know how many times 

you will ski. What should you do?
• An online strategy will be a number k such 

that after renting k-1 times you will buy skis 
(just before your kth visit). 

• Claim: Setting k = y guarantees that you 
never pay more than twice the cost of the 
offline strategy. 

• Example: Assume y=7$ Thus, after 6 rents, 
you buy.  Your total payment: 6+7=13$.
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The Ski-Rental Problem

Theorem: Setting k = y guarantees that you never pay 
more than twice the cost of the offline strategy. 

Proof: when you buy skis in your kth visit, even if you 
quit right after this time,  t � y. 

• Your total payment is k-1+y =2y-1.

• The offline cost is min(t, y) = y.
• The ratio is (2y-1)/y = 2-1/y.                             �

We say that this strategy is (2-1/y)-competitive.
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Competitive Ratio

• An on-line algorithm A is c-competitive if 
there is a constant b for all sequences s 
of operations

A(s) < c OPT(s) + b
where A(s) is the cost of A on the 
sequence s and OPT(s) is the optimal 
off-line cost for the same sequence.

• Competitive ratio is a worst case bound.
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The Ski-Rental Problem
Is there a better strategy?

• Let k be any strategy (buy after k-1 rents). 

• Suppose you buy the skis at the kth time and then break 
your leg and never ski again.

• Your total ski cost is k-1+y and the optimum offline cost 
is min(k,y).

• For every k, the ratio (k-1+y)/min(k,y) is at least (2-1/y)

• Therefore, every strategy is at least (2-1/y)- -competitive.             
�
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The Ski-Rental Problem

The general rule:

When balancing small incremental costs 
against a big one-time cost, you want to 
delay spending the big cost until you 
have accumulated roughly the same 
amount in small costs. 
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The Lost Cow Problem

Old McDonald lost his favorite cow. It was 
last seen marching towards a junction 
leading to two infinite roads. None of 
the witnesses can say if the cow picked 
the left or the right route.
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The Lost Cow Problem

Old McDonald’s algorithm:

1. d=1; current side = right 

2. repeat: 
i. Walk distance d on current side 

ii. if find cow then exit 

iii. else return to starting point 

iv. d = 2d

v. Flip current side 
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The Lost Cow Problem

Theorem: Old McDonald’s algorithm is 9-
competitive.

In other words: The distance that Old 
McDonald  might pass before finding the cow 
is at most 9 times the distance of an optimal 
offline algorithm (who knows where the cow 
is). 
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The Lost Cow Problem

Theorem: Old McDonald’s algorithm is 9-competitive.

Proof:The worst case is that he finds the cow a little 
bit beyond the distance he last searched on this side 
(why?).

Thus, OPT = 2j + � where j = # of iterations and � is 
some small distance. Then, 

Cost OPT = 2j + � >  2j

Cost ON = 2(1 + 2 + 4 + … + 2j+1 ) + 2j + �

= 2�2j+2 + 2j + � = 9�2j + � < 9 � Cost OPT   �
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Edge Coloring

• An Edge-coloring of a graph G=(V,E) is an assignment, 
c, of integers to the edges such that if e1 and e2 share an 
endpoint then c(e1) � c(e2).

• Let � be the maximal degree of some vertex in G.
• In the offline case, it is possible to edge-color G using �

or �+1 colors (� colors are necessary and it is NP-hard 
to determine whether �+1 are required). 

• Online edge coloring: The graph is not known in 
advance. In each step a new edge is added and we 
need to color it before the next edge is known.
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Optimal Online Algorithm for Edge 
Coloring

- We color the edges with numbers 1,2,3…

- Let e=(u,v) be a new edge.

Color e with the smallest color which is not used by any 
edge adjacent to u or v. 

Claim: The algorithm uses at most 2�-1 colors.
Proof outline (was hw6 q.1): assume we need the color 

2�. It must be that all the colors 1,2,…,2�-1 are used 
by edges adjacent to u or v. Therefore, either u or v 
has � adjacent edges, excluding e, contradicting the 
definition of �.

� �
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Online Edge Coloring
Claim: Any deterministic algorithm needs at least 2�-1 

colors.
Proof: Assume there is an algorithm that uses only 2�-2

colors. Given � we add to the graph many (�-1)-stars.

There is a finite number of ways to edge-color a (�-1)-star 
with colors from {1,2,…,2�-2}, so at some point we must 
have � stars, all colored with the the same set of �-1
colors.
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Online Edge Coloring
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� stars, all 
colored with 
the the same 
set of �-1 
colors. ��

Let v1,v2,…,v� be the centers of these stars.     

We are ready to shock the algorithm!.

We add a new vertex, a, and � edges (a-v1), …,(a,v�).
Each new edge must have a unique color (why?), that 
is not one of the (�-1) colors used to color the stars 
(why?) à 2�-1 colors must be used.

Note: the maximal degree is �
18

Online Scheduling and Load Balancing

Problem Statement:

• A set of m identical machines, 

• A sequence of jobs with processing times p1, p2,….

• Each job must be assigned to one of the machines.

• When job j is scheduled, we don’t know how many 
additional jobs we are going to have and what are their 
processing times.

Goal: schedule the jobs on machines in a way that 
minimizes the makespan = max i �j on Mi pj .

(the maximal load on one machine) 
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Online Scheduling and Load Balancing

List Scheduling [Graham 1966]:

A greedy algorithm: always schedule a job on the 
least loaded machine. 

Example: m=3  � = 7 3 4 5 6 10

M3

M2

M1 7

3

4

5

6

10

Makespan = 17

Online Scheduling and Load Balancing

Theorem: List- Scheduling is (2-1/m)- competitive.

Proof: Let Hj denote the last completion time on the jth

machine. Let k be the job that finishes last and 
determines CLS.

All the machines are busy when j starts its processing, 
thus, �j, Hj � CLS - pk. 

For at least one machine (that processes k) Hj = CLS . 

CLS – pk CLS

pk

à �i pi = �j Hj � (m-1) (CLS – pk)+ CLS. 

à �i pi +(m-1)pk � mCLS. 

à CLS 	 1/m �i pi +

pk (m-1)/m.
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Online Scheduling and Load Balancing

à CLS 	 1/m �i pi + pk (m-1)/m. 

Consider an optimal offline schedule.

Copt � maxi pi  � pk (some machine must process the 

longest job).

Copt � 1/m �i pi (if the load is perfectly balanced).

Therefore,

CLS 	 Copt + Copt (m-1)(m) = (2-1/m) Copt.
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Online Scheduling

Are there any better algorithms?

Not significantly. Randomization do help.
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A lower Bound for Online Scheduling

Theorem: For m=2, no algorithm has r< 1.5

Proof: Consider the sequence � = 1,1,2.

If the first two jobs are scheduled on different machines, the 
third job completes at time 3.

2
1

3
m1
m2 1 2

3m1
m2

CA=3, Copt=2

r=3/2

If the first two jobs are scheduled on the same 
machine, the adversary stops.

21
m1
m2 2

1m1
m2

CA=2, Copt=1

r=2

alg                              opt

alg                              opt
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Paging- Cache Replacement Policies

Problem Statement: 

•There are two levels of memory:

– fast memory M1 consisting of k pages (cache)

– slow memory M2 consisting of n pages (k < n).

• Pages in M1 are a strict subset of the pages in M2. 

• Pages are accessible only through M1 .

• Accessing a page contained in M1 has cost 0. 

• When accessing a page not in M1, it must first be 
brought in from M2 at a cost of 1 before it can be 
accessed. This event is called a page fault. 
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Paging- Cache Replacement Policies

Problem Statement (cont.): 

If M1  is full when a page fault occurs, some 

page in M1 must be evicted in order to make room in 
M1. 

How to choose a page to evict each time a 
page fault occurs in a way that minimizes the 

total number of page faults over time?
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Paging- An Optimal Offline Algorithm

Algorithm LFD (Longest-Forward-Distance)

An optimal off-line page replacement strategy. 

On each page fault, replace the page in M1 

that will be requested farthest out in the future. 

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

a
b
d

a
b
d

e
b
d

a
b
d

e
b
d

e
b
d

e
b
d

c
b
d

c
b
d

c
a
d

c
a
d

*                *                     *         *
4 cache misses in LFD
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Paging- An Optimal Offline Algorithm

A classic result from 1966: 

LFD is an optimal page replacement policy.

Proof idea: For any other algorithm A, the cost 
of A is not increased if in the 1st time that A
differs from LFD we evict in A the page that is 
requested farthest in the future.

However, LFD is not practical.

It is not an online algorithm!
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Online Paging Algorithms
FIFO: first in first out: evict the page that was entered 
first to the cache.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

d
b
c

d
a
c

e
a
b

d
a
b

e
d
b

e
d
b

e
d
b

e
d
c

e
d
c

a
d
c

a
d
c

*    *    *    *   *             * *

Theorem:  FIFO is k-competitive: for any 
sequence, #misses(FIFO) 	 k #misses (LFD)

7 cache 
misses 
in FIFO
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Online Paging Algorithms
LIFO: last in first out: evict the page that was entered 
last to the cache.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , e , d , e , b , c , c , a , d
a
b
c

a
b
d

a
b
d

a
b
e

a
b
d

a
b
d

a
b
e

a
b
e

a
b
c

a
b
c

a
b
c

a
b
d

*    *   *    *          *              *

Theorem:  For all n>k, LIFO is not competitive: 
For any c, there exists a sequence of requests 
such that #misses(FIFO) � c #misses (LFD)

6 cache 
misses 
in LIFO
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Online Paging Algorithms
LRU: least recently used: evict the page with the 
earliest last reference.

Example: M2={a,b,c,d,e} n=5, k=3

�= a, b, c , d , a , b , d , e , d , e , b , c 
a
b
c

d
b
c

d
a
c

d
a
b

d
a
b

d
e
b

d
e
b

d
e
b

d
e
b

c
e
b

*    *    *         *                     *

Theorem:  LRU is k-competitive
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Paging- a bound for any deterministic 
online algorithm

Theorem: For any k and any deterministic on-line 

algorithm A, the competitive ratio of A � k.

Proof: Assume n= k+1 (there are k+1 distinct pages).  

What will the adversary do?

Always request the page that is not currently in M1

This causes a page fault in every access. The total cost 
of A is |�|.
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Paging- a bound for any deterministic 
online algorithm

What is the price of LFD in this sequence? 

•At most a single page fault in any k accesses 

(LFD evicts the page that will be needed in the k+1th 

request or later)

•The total cost of LFD is at most |�|/k.

Therefore: Worst-case analysis is not so important in 
analyzing paging algorithm

•Can randomization help? Yes!! 


