CSE 521
Algorithms
Spring 2003
Contiguous Ordering - PQ Trees

## DNA

- DNA is a large molecule that can be abstractly defined as a sequence of symbols from the set, A, C, G, T, called nucleotides.
- The human genome has about 3 billion nucleotides.
- A huge percentage of the genome is shared by all humans.
- Some of the variation makes us different.
- Some of the variation is inconsequential.
- The human genome is still being discovered.


## DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones. Clones are 10's of thousands of nucleotides long.



## Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.


CSE 521 - Contiguous Ordering - Spring 2003

## Tagging the Clones

- By chemistry the clones can be tagged by identifying a region of the DNA uniquely.

- Each clone is then tagged correspondingly.

CSE 521 - Contiguous Ordering - Spring 2003

## Contiguous Ordering Solutions

Contiguous ordering problem Solution
$U=\{A, B, C, D, E, F, G, H$,
$S=\{\{E, G\}$
$\{\mathrm{F}, \mathrm{G}, \mathrm{H}\}$
\{A, I\}
$\{C, D\}$
$\{E, G\}$
\{A, H, I\}
$\{\mathrm{B}, \mathrm{D}\}$
$\{\mathrm{B}, \mathrm{D}\}$
$\{\mathrm{F}, \mathrm{B}\}$
$\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{I}\}$
$\{C, D\}$


Alternate Solutions
interchange EGFHIABDC
I and A
reversal CDBIAHFGE CDBAIHFGE

## Linear Time Algorithm

- Booth and Lueker, 1976, designed an algorithm that runs in time $\mathrm{O}(\mathrm{n}+\mathrm{m}+\mathrm{s})$.
-n is the size of the universe, m is the number of sets, and $s$ is the sum of the sizes of the sets.
- It requires a novel data structure called the $P Q$ tree that represents a set of orderings.
- PQ trees can also be used to test whether an undirected graph is planar.



## PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe U and a set $\mathrm{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}}\right\}$ of subsets of $U$.
- Output: A PQ tree T with leaves U with the property that $\mathrm{PQ}(\mathrm{T})$ is the set of all orderings of $U$ where each set in $S$ is contiguous in the ordering.


There are 8 orderings that are possible in keeping each of these sets contiguous.

## High Level PQ tree Algorithm

- Input is $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and subsets $S_{1}, S_{2}$, $\mathrm{S}_{\mathrm{m}}$ of U .
- Initialization:
$-T=P$ node with children $A_{1}, A_{2}, \ldots, A_{n}$
- Calculate $m$ restrictions:
- for $\mathrm{j}=1$ to m do $\mathrm{T}:=\operatorname{Restrict}\left(\mathrm{T}, \mathrm{S}_{\mathrm{j}}\right)$
- At the end of iteration k :
$-\mathrm{PQ}(\mathrm{T})=$ the set of ordering of $U$ where each set $\mathrm{S}_{1}$, $\mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ are contiguous.
- Given a set $S$ and $P Q$ tree $T$ we can mark nodes either full or partial.
- A leaf is full if it is a member of $S$.
- A node is full if all its children are full.
- A node is partial if either it has both full and nonfull children or it has a partial child.
- A node is doubly partial if it has two partial children.


## PQ Tree Restriction

- Let $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, S=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, and $T a$ PQ tree.
- We will define a function Restrict with the following properties:
- Restrict $(\mathrm{T}, \mathrm{S})$ is a PQ tree.
$-\mathrm{PQ}($ Restrict $(\mathrm{T}, \mathrm{S}))=\mathrm{PQ}(\mathrm{T})$ intersect $\mathrm{PQ}\left(\mathrm{T}^{\prime}\right)$ where


CSE 521 - Contiguous Ordering - Spring 2003

## Marking Nodes

## Structure of the Marked PQ Tree



CSE 521 - Contiguous Ordering - Spring 2003

Restrict(T,S)

- Mark the full and partial nodes from the bottom up.
- In the process the marked leaves become contiguous.
- Locate the key node.
- Deepest node with the property that all the full leaves are descendents of the node.
- Restrict the key node.
- In the process of restricting the key node we will have to recursively direct partial nodes.
- Directing a node returns a sequence of nodes.

CSE 521 - Contiguous Ordering - Spring 2003

Restricting a P node with no Partial Children


CSE 521 - Contiguous Ordering - Spring 2003

Directing a P Node

left direct a P node $\downarrow$
Directing a node produces a sequence of nodes.





## Exercise

- Restrict with to make $\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{G}\}$ contiguous


Number of Processed Nodes Amortized


## Partials with Partial Children Below the Key Node

- Amortized complexity argument.
- Consider the quantities:
- $q$ = number of $Q$ nodes, $\mathrm{cp}=$ number of children of P nodes.
- We examine the quantity $x=q+c p$
-x is initially n and never negative.
- Each restrict of a key node increases $x$ by at most 1 .
- Each direct of a partial node with a partial child decreases $x$ by at least 1 .
- Since there are $m$ restricts of a key node then there are most $\mathrm{n}+\mathrm{m}$ directs of partials with partial children. CSE 521 - Contiguous Ordering - Spring 2003




## PQ Tree Notes

- In algorithmic design only a linear number of nodes are ever processed.
- Designing the data structures to make the linear time processing a reality is very tricky.
- PQ trees solve the idealized DNA ordering problem.
- In reality, because of errors, the DNA ordering problem is NP-hard and other techniques are used.



## Notes on PQ-trees

- Linear time, but complicated data structure to achieve it.
- PQ-trees can be used to detect if a graph is planar and produce a planar layout in linear time.
- The DNA example is too idealized because of errors.
- The problem of finding the minimum number of insertions and deletions from sets to achieve a contiguous ordering is NP-hard.

