Geometric Algorithms

• Algorithms about points, lines, planes, polygons, triangles, rectangles and other geometric objects.
• Applications in many fields
 – robotics, graphics, CAD/CAM, geographic systems

Convex Hull in 2-dimension
• Given n points on the plane find the smallest enclosing curve.

Definition of Convex Hull Problem
• Input:
 Set of points p_1, p_2, ..., p_n in 2 space. (Each point is an ordered pair p = (x, y) of reals.)
• Output:
 A sequence of points p_{i1}, p_{i2}, ..., p_{ik} such that traversing these points in order gives the convex hull.

Example
Input: p_1, p_2, ..., p_{12}
Output: p_6, p_1, p_2, p_{11}, p_{12}, p_{10}
Slow Convex Hull Algorithm

- For each pair of points p, q determine if the line from p to q is on the convex hull.

Diagram:

```
\text{No} \quad \text{Yes}
```

- Time Complexity is $O(n^2)$
 - Constant time to test if point is on one side of the line from (p_1, p_2) to (q_1, q_2).
 \[0 = (q_2 - p_2)x + (p_1 - q_1)y + p_2q_1 - p_1q_2 \]

Graham’s Scan Convex Hull Algorithm

- Sort the points from left to right (sort on the first coordinate in increasing order)

Convex Hull Algorithm

- Right Turn
Convex Hull Algorithm

• Left Turn – back up

Convex Hull Algorithm

• Left Turn – back up

Convex Hull Algorithm

• Left Turn – back up

Convex Hull Algorithm

• Right Turn
Convex Hull Algorithm

- Left Turn – back up
Convex Hull Algorithm

• Left Turn – back up

Convex Hull Algorithm

• Upper convex hull is complete

Continue the process in reverse order to get the lower convex hull

Convex Hull Algorithm

• Right Turn

Convex Hull Algorithm

• Left Turn – back up
Convex Hull Algorithm

• Right Turn

Convex Hull Algorithm

• Left Turn – back up

Convex Hull Algorithm

• Done!

Co-linear Points

• Not a left turn
 – Middle point is included in the convex hull
Vertical Points

- Sort
 - First increasing in x
 - Second decreasing in y

Testing For Left Turn

- Slope increases from one segment to next

\[
\frac{q_2 - p_2}{r_2 - q_2} > \frac{r_2 - q_1}{q_2 - p_1}\]

(left turn)

\[
(q_2 - p_2)(r_1 - q_1) < (r_2 - q_1)(q_1 - p_1)
\]
to avoid dividing by zero

Time Complexity of Graham’s Scan

- Sorting – \(O(n \log n)\)
- During the scan each point is “visited” at most twice
 - Initial visit
 - Back up visit (happens at most once)
- Scan - \(O(n)\)
- Total time \(O(n \log n)\)
- This is best possible because sorting is reducible to finding convex hull.

Notes on Convex Hull

- \(O(n \log n)\)
 - Graham (1972)
- \(O(n \log h)\) algorithm where \(h\) is the size of hull
 - Jarvis’ March, “Gift wrapping” (1973)
 - Output sensitive algorithm
- \(O(n \log h)\) algorithm where \(h\) is size of hull
 - Kirkpatrick and Seidel (1986)
- \(d\)-dimensional Convex Hull
 - \(\Omega(n^{d+1})\) in the worst case because the output can be this large.

Line Segment Intersection Problem

Special cases

- Report the point and all the lines that meet there.
- Report the segment and all the lines that meet on it.
Polygon Intersection

• Polygons have no self intersections

Use line segment intersection to solve polygon intersection

Polygon Intersection

• What if no line segment intersections?

Issues

• With n line segments there may be $O(n^2)$ intersections.

• Goal: Good output sensitive algorithm
 – $O(n \log n + s)$ would be ideal where s is the number of intersections.

Plane Sweep Algorithm

• Sweep a plane vertically from top to bottom maintaining the set of known future events.

• Events
 – Beginning of a segment
 – End of a segment
 – Intersection to two "adjacent" segments

Segment List

• We maintain ordered list of segments

 segment ordering at $y = c, d, f, b, e, a$
Key Idea in the Algorithm

- Just before an intersection event the two line segments must be adjacent in the segment order.
- When a new adjacency occurs between two lines we must check for a possible new intersection event.

Initialization

- Event Queue
 - contains all the beginning points and all the end points of segments ordered by decreasing y value.

Algorithm

- Remove the next event from the event queue

Complications

- Several events can coincide.
- Horizontal lines do in left to right order

Example
Example

Segment List
a

Event Queue
b, a

Example

Segment List
c, b, a

Event Queue
d, b, a
Example

Segment List
b, c, a

Event Queue
\(e_u, e_v, e_u, e_v, e_l\)

Example

Segment List
b, c, a

Event Queue
\(e_u, e_v, e_u, e_v, e_l\)

Example

Segment List
c, a, d

Event Queue
\(e_u, e_v, e_u, e_v, e_l\)

Example

Segment List
c, a, d

Event Queue
\(e_u, e_v, e_u, e_v, e_l\)

Example

Segment List
c, a, d

Event Queue
\(e_u, e_v, e_u, e_v, e_l\)
Data Structures

- **Event List**
 - Priority queue ordered by decreasing y, then by increasing x
 - Delete minimum, Insertion
- **Segment List**
 - Balanced binary tree search tree
 - Insertion, Deletion
 - Reversal can be done by deletions and insertions
- **Time per event is $O(\log n)$**

Finding Line Segment Intersections

- Given line segments $(p_1,p_2), (q_1,q_2)$ and $(r_1,r_2), (s_1,s_2)$ do they intersect, and if so where.
- **Where?** Solve
 - $0 = (q_2 - p_2)x + (p_1 - q_1)y + p_2q_1 - p_1q_2$
 - $0 = (s_2 - r_2)x + (r_1 - s_1)y + r_2s_1 - r_1s_2$
- **If?**
 - (p_1,p_2) and (q_1,q_2) on opposite sides of line $(r_1,r_2), (s_1,s_2)$ and
 - (r_1,r_2) and (s_1,s_2) on opposite sides of line $(p_1,p_2), (q_1,q_2)$

Notes on Line Segment Intersections

- Total time for plane sweep algorithm is $O(n \log n + s \log n)$ where s is the number of intersections.
 - $n \log n$ for the initial sorting
 - $\log n$ per event
- Plane sweep algorithms were pioneered by Shamos and Hoey (1975).
- Intersection Reporting - Bentley and Ottmann (1979)
Each site defines an area of points nearest to it. Boundaries are perpendicular bisectors.

http://www.cs.cornell.edu/home/chew/Delaunay

Voronoi Diagram

- **Vertex**
- **Edge**
- **Site**

Brute Force

- Each Voronoi area is the intersection of half spaces defined by perpendicular bisectors.

\[O(n \log n) \text{ time} \]

Linear Size of Voronoi Diagram

- The Voronoi Diagram is a planar embedding so it obeys Euler’s equation: \(V - E + F = 2 \)

- Vertices = 7 (single vertex at infinity)
- Edges = 11
- Faces = 6

- \(F = E - V + 2 \) (Euler’s equation)
- \(n = F \) (one site per face)
- \(2E \geq 3V \) because each vertex is of degree at least 3 and each edge has 2 vertices.
 - \(n \geq 3V/2 - V + 2 = V/2 + 2 \)
 - \(2n - 2 \geq V \)
 - \(n > E = (2n - 2) + 2 \)
 - \(3n - 4 \geq E \)

Properties Voronoi Diagram

1. A vertex is the center of a circle through at least three sites

2. A point on a perpendicular bisector of sites \(p \) and \(q \) is on an edge if the circle centered at the point through \(p \) and \(q \) contains no other sites.
Fortune's Sweep

- We maintain a "beach line," a sequence of parabolic segments that is the set of point equidistant from a site and the sweep line.
- Events
 - Site event – new site is encountered by the sweep line
 - Circle event – new vertex is inserted into the Voronoi diagram

Example

site point event

points equidistant from point and line

breakpoint segment
Example

- Contains site events and circle events sorted by y in decreasing order, then by x in increasing order
- Circle events can be both inserted and deleted.
Beach Line

- Implemented as a balanced binary search tree.
 - sites at leaves
 - breakpoints at internal nodes

Output

- For each site output the vertices in clockwise order.
 When a circle event occurs add to the vertex list of the three (or more) sites.

Complexity

- Number of segments in the beach line $\leq 2n$
 - Each site event adds at most 2 segments.
- Number of circle event insertions $\leq 2n$
 - Each site event creates at most 2 circle events.
- Time per event is $O(\log n)$
 - Insert new segments into the segment tree.
 - Insert new circle events into the event queue
 - Delete circle events from the event queue
- Total time is $O(n \log n)$

Voronoi Diagram Notes

- Voronoi diagram
 - Dirichlet (1850), Voronoi (1907)
- $O(n \log n)$ algorithm
 - Divide and conquer - Shamos and Hoey (1975)
 - Plane sweep – Fortune (1987)

Exercise

- Give an $O(n \log n)$ algorithms which given a set of n points on the plane, for each point finds its nearest neighbor.