1. In this problem we will examine several on-line algorithms for list access: MF (move-to-front), T (transpose), and FC (frequency count) on a specific request sequence. Consider a list \(x_1, x_2, \ldots, x_k \) with the following sequence \(k \) accesses to \(x_k \), \(k - 1 \) accesses to \(x_{k-1} \), all the way to 1 access to \(x_1 \). Altogether there are \(n = k(k + 1)/2 \) accesses with no insertions or deletions.

 (a) Calculate (as a function of \(k \)) the cost of MF, T, and FC for this request sequence.

 (b) Use your result to prove that T and FC are not constant competitive. Use the fact that MF is 2-competitive to achieve your result.

2. A generalization of the paging problem is called the \(k \)-server problem where we have a metric space \((M, d)\) of points and \(k \) servers which lie on \(k \) points. Recall a metric space \((M, d)\) has the property that \(d \) is a mapping from \(M \times M \) into the real numbers such that \(d(x, y) \geq 0 \), \(d(x, y) = 0 \) implies \(x = y \), \(d(x, y) = d(y, x) \), and \(d(x, z) \leq d(x, y) + d(y, z) \). A request is simply a member of \(M \). A request is said to be served if one of the servers is on the requested point. The cost of serving a request \(r \) is \(d(r, x) \) where the server on point \(x \) is moved to \(r \) to serve the request.

 (a) Define a metric space that makes the paging problem with cache size \(k \) into a \(k \)-server problem.

 (b) Consider the following metric space with exactly three points \(a, b \) and \(c \) on a line. The points \(a \) and \(c \) are 1 unit apart and \(b \) is between \(a \) and \(c \) exactly with distance 1/3 from \(a \) and 2/3 from \(c \). There are 2 servers. The greedy on-line algorithm always serves a request by moving the nearest server to it. Show that the greedy on-line algorithm is not constant competitive.