
CSE 521
Assignment 6

Due Tuesday, May 13, 2003

1. There are a number of matrix multiplication algorithms that use less thanO(n3) operations
where the matrices aren × n. The most famous is Strassen’s algorithm that is based on
being able to do2 × 2 matrix multiplication in 7 multiplications instead of the usual 8 (see
28.2 of CLRS). Strassen’s method and many of the others only require that the elements of
the matrices be members of aring. Rings have addition, subtraction (additive inverses), and
multiplication. The operations are associative and the distributive law holds. The addition
is commutative, but the multiplication does not have to be commutative. The integers with
addition and multiplication,(Z,+, ·), is ring where the multiplication is commutative. Even
more(Zn,+n, ·n) is a commutative ring. The2 × 2 matrices over the reals also form a ring
that is noncommutative.

Now consider Boolean matrix multiplication defined as follows. LetA and B be n × n
matrices of Boolean values{0, 1}. The Boolean operators are∨ (or) and∧ (and). Define
C = AB by

Cij = (Ai1 ∧B1j) ∨ (Ai2 ∧B2j) ∨ · · · ∨ (Ain ∧Bnj)

for 1 ≤ i, j ≤ n. Boolean matrix multiplication can be computed inO(n3) operations
andO(n3) bit operations. Strassen’s algorithm does not directly apply to Boolean matrix
multiplication because the∨ operator does not have inverses.

(a) Show how to efficiently reduce Boolean matrix multiplication to a matrix multiplication
problem in(Zm,+m, ·m) for somem. You’ll want to choosem as small a possible to
achieve your result.

(b) Suppose matrix multiplication over a ring takesO(nα) operations. Assume binary addi-
tion and subtraction take linear bit operations and binary multiplication takes quadratic
bit operations, how many bit operations, as a function ofn, does it take to do Boolean
matrix multiplication using your reduction.

2. Consider polynomials overZ2, defined asZ2[x]. These polynomials have coefficients that
are either0 or 1. An example isx5 + x3 + x + 1. TheZ2[x] polynomials can be added or
multiplied in the usual way, except that the coefficients are always added and multiplied mod
2. As examples we have:(x5 + x3 + x + 1) + (x6 + x5 + x2 + 1) = x6 + x3 + x2 + 1
and(x + 1)(x + 1) = x2 + 1. There is also a division algorithm, where ifB(x) andD(x)
are two polynomials inZ2[x] then there are polynomialsQ(x) andR(x) such thatB(x) =
Q(x)D(x) + R(x) anddeg(R(x)) < deg(D(x)). There is a one-to-one correspondence
betweenZ2[x] polynomial with degree-boundn and bit strings of lengthn given

n−1∑
i=0

bix
i ↔ bn−1bn−2 · · · b0.
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Error detecting codes calledcyclic redundancy codesuse this correspondence in the following
way. Suppose we want to transmit a bit stringbn−1bn−2 · · · b0. Think of this as transmitting a
Z2[x] degree-boundm polynomialT (x) =

∑m−1
i=0 tix

i. Think of an error in transmission as
anotherZ2[x] degree-boundm polynomialE(x) =

∑m−1
i=0 eix

i. What is received isT (x) +
E(x) =

∑m−1
i=0 (ti + ei)xi, where addition is mod 2. For example, an isolated single bit error

is represented byE(x) = xi.

A cyclic redundancy code (CRC) is defined by a degreek polynomialG(x) =
∑k

i=0 gix
i

wheregk = 1. To apply this code we transmitn + k bits, instead of the originaln bits,
computed in the following fashion. LetB(x) be a degree-boundn polynomial representing
then bits to be transmitted and letG(x) be the degreek polynomial of the code. LetR(x) be
the remainder ofxkB(x) divided byG(x). The remainderR(x) is has degree-boundk so it
can be represented ink bits. We transmit the originaln bits followed by thek bits representing
the remainder. In terms ofZ2[x] polynomials we transmitT (x) = xkB(x)+R(x) which has
degree boundn+ k. Supposen+ k bits, represented byT ′(x) = T (x)+E(x), are received.
Divide T ′(x) by G(x). If the remainder is not zero then an error is detected, otherwise accept
the transmission (although there may be an undetected error).

As an example, considerG(x) = x + 1 andB(x) = x6 + x5 + 1 of degree-bound8 repre-
senting the bit string 01100001. Dividingx + 1 into x7 + x6 + x yields a remainder of1. We
transmit the 9 bit string 011000011, represented by the polynomialx7 +x6 +x+1. Suppose
the string 011100011, represented byT ′(x) = x7 + x6 + x5 + x + 1, is received. Dividing
T ′(x) by x + 1 yields a remainder of1. Thus, we have detected a one bit error. Standard 16
bit CRC’s areG(x) = x16 + x15 + x2 + 1 andG(x) = x16 + x15 + x5 + 1

(a) Let xkB(x) = Q(x)G(x) + R(x) wheredeg(R(x)) < deg(G(x)) = k. Show that
G(x) is a factor ofxkB(x) + R(x).

(b) Show that ifx + 1 dividesG(x) then all errors with an odd number of bits are detected.
These errors are represented byE(x) with an odd number of non-zero terms.

(c) Show that ifG(x) does not dividexm +1 for all m ≤ n+k (n is the original number of
bits to be transmitted andk = deg(G(x))) andx does not divideG(x), then all isolated
two bit errors represented by a polynomialE(x) = xj + xi with 0 ≤ i < j < n and
j − i = m are detected.

(d) Show that ifG(x) has the constant term 1, then all burst errors of length≤ k are
detected wheredeg(G(x)) = k. A burst error of lengthm is represented byE(x) =
xi(xm−1 + · · ·+ x + 1).

3. An alternative GCD algorithm that does not use division is based on the following:

a. If a andb are even thengcd(a, b) = 2 gcd(a/2, b/2).

b. If a is odd andb is even thengcd(a, b) = gcd(a, b/2).

c. If a andb are odd thengcd(a, b) = gcd((a− b)/2, b).

(a) Prove a, b, and c above.

(b) Use these to design a recursive algorithm for the GCD.

(c) Analyze the number of bit operations your algorithm takes assuming that testing for
parity, addition/subtraction, and division by 2 take a linear number of bit operations.
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