CSE 521
Assignment 6
Due Tuesday, May 13, 2003

1. There are a number of matrix multiplication algorithms that use less@tan) operations
where the matrices are x n. The most famous is Strassen’s algorithm that is based on
being able to d@ x 2 matrix multiplication in 7 multiplications instead of the usual 8 (see
28.2 of CLRS). Strassen’s method and many of the others only require that the elements of
the matrices be members ofiag. Rings have addition, subtraction (additive inverses), and
multiplication. The operations are associative and the distributive law holds. The addition
is commutative, but the multiplication does not have to be commutative. The integers with
addition and multiplication(Z, +, -), is ring where the multiplication is commutative. Even
more(Zy,, +n, -»n) IS @ commutative ring. Th2 x 2 matrices over the reals also form a ring
that is noncommutative.

Now consider Boolean matrix multiplication defined as follows. Ketind B ben x n
matrices of Boolean value), 1}. The Boolean operators axe(or) andA (and). Define
C = AB by

CZ‘j = (Ail A Blj) V (Aig A\ sz) V-V (Am AN an)
for 1 < 4,5 < n. Boolean matrix multiplication can be computeddr{n?) operations
andO(n?) bit operations. Strassen’s algorithm does not directly apply to Boolean matrix
multiplication because the operator does not have inverses.

(a) Show how to efficiently reduce Boolean matrix multiplication to a matrix multiplication
problem in(Z,,, +m, -m) for somem. You'll want to choosen as small a possible to
achieve your result.

(b) Suppose matrix multiplication over a ring takeg»“) operations. Assume binary addi-
tion and subtraction take linear bit operations and binary multiplication takes quadratic
bit operations, how many bit operations, as a function,odoes it take to do Boolean
matrix multiplication using your reduction.

2. Consider polynomials ovefs, defined asZ;[z]. These polynomials have coefficients that
are eithei0 or 1. An example ist® + 23 + x + 1. The Z»[z] polynomials can be added or
multiplied in the usual way, except that the coefficients are always added and multiplied mod
2. As examples we havez® + 22 + 2+ 1)+ (20 + 25+ 22+ 1) = 20 + 23 + 22 + 1
and(z + 1)(x + 1) = 22 + 1. There is also a division algorithm, wheref(x) and D(z)
are two polynomials ir¥s[x] then there are polynomial@(x) and R(x) such thatB(z) =
Q(z)D(x) + R(x) anddeg(R(z)) < deg(D(z)). There is a one-to-one correspondence
betweenZ,[z] polynomial with degree-bound and bit strings of length given

n—1

Z bZI‘Z — bnflbnfg cee bg.
1=0

Error detecting codes callegclic redundancy codesse this correspondence in the following
way. Suppose we want to transmit a bit string 16,,_s - - - by. Think of this as transmitting a
Z>[z] degree-boundh polynomialT(x) = S ¢;2°. Think of an error in transmission as
anotherZ,[z] degree-boundr polynomial E(z) = 37" e;x'. What is received ig' () +
E(x) = Y7, (t; + e;)2?, where addition is mod 2. For example, an isolated single bit error
is represented by (z) = 2.

A cyclic redundancy code (CRC) is defined by a dedtgelynomial G(z) = Zf:o gzt
whereg, = 1. To apply this code we transmit + & bits, instead of the originat bits,
computed in the following fashion. Le%(z) be a degree-bound polynomial representing
then bits to be transmitted and I&t(x) be the degreg polynomial of the code. LeR(z) be

the remainder of* B(z) divided byG (z). The remaindeRR(x) is has degree-bounidso it

can be representedirbits. We transmit the original bits followed by thé: bits representing

the remainder. In terms @ [z] polynomials we transmif'(z) = z* B(z) + R(z) which has
degree bound + k. Suppose: + k bits, represented By’ (z) = T'(z) + E(z), are received.
Divide T'(x) by G(x). If the remainder is not zero then an error is detected, otherwise accept
the transmission (although there may be an undetected error).

As an example, consid€¥(x) = = + 1 andB(z) = 2% + z° + 1 of degree-bound repre-
senting the bit string 01100001. Dividing+ 1 into 27 + 25 + yields a remainder of. We
transmit the 9 bit string 011000011, represented by the polynarhialz® + = + 1. Suppose

the string 011100011, represented®yz) = 27 + x5 + 2° + x + 1, is received. Dividing
T'(z) by x + 1 yields a remainder of. Thus, we have detected a one bit error. Standard 16
bit CRC’s areG(x) = 21¢ + 21 + 22 + 1 andG(z) = 20 + 215 + 2° + 1

(@) Letz*B(z) = Q(x)G(z) + R(x) wheredeg(R(z)) < deg(G(z)) = k. Show that
G(z) is a factor ofz* B(x) + R(x).

(b) Show that ifz + 1 dividesG () then all errors with an odd number of bits are detected.
These errors are representediiy) with an odd number of non-zero terms.

(c) Show thatifG(x) does not dividee™ + 1 for all m < n+ k (n is the original number of
bits to be transmitted and= deg(G(z))) andz does not divide7(x), then all isolated
two bit errors represented by a polynomiglz) = 27 + z° with 0 < i < j < n and
j — i = m are detected.

(d) Show that ifG(z) has the constant term 1, then all burst errors of lengttk are
detected wherdeg(G(z)) = k. A burst error of lengthm is represented by(x) =
g™+ a4 1),

3. An alternative GCD algorithm that does not use division is based on the following:

a. If a andb are even thegcd(a, b) = 2gcd(a/2,b/2).
b. If a is odd and is even thergced(a, b) = ged(a, b/2).
c. If a andb are odd thergcd(a, b) = ged((a — b)/2,b).

(a) Prove a, b, and ¢ above.
(b) Use these to design a recursive algorithm for the GCD.

(c) Analyze the number of bit operations your algorithm takes assuming that testing for
parity, addition/subtraction, and division by 2 take a linear number of bit operations.

