CSE 521
Assignment 5
Due Tuesday, May 6, 2003

1. The FFT can be used as part of an algorithm to multiply polynomials with complex coeffi-
cients. This can be done with some loss of accuracy with floating point numbers. However,
what if we want to multiply polynomials over the integers with total accuracy. In this case we
need an integer like method. To achieve this we can use a large prime np@mberely on
the fact that the integensiodp are a field with some roots of unity. To be more specific, let
n be a power of 2 and choogeso thatp = kn + 1 is a prime. There is a numbersuch that
the set

{g' mod p,g?> mod p, ...,¢° ' mod p} = {1,2,...,p — 1},
that is, in mathematical termgis a generator oZ,;. For example ifp = 17 then2 is a
generator ofZ}5, but, for examplé is not. Now, letw = gk.

(a) Show thatw is a principaln-th root of unity modp. That is,w™ mod p = 1 and
w®mod p # 1for 0 < 1 < n. Note that the mapping— ¢¢ on the domair{1,...,p—
1} is a one-to-one function for @aa generator of;.

(b) Argue that the DFT and inverse DFT are well defined (non-singular) withosen as
a principlen-th root of unity modp.

(c) Assuming thap is log n bits and that arithmetic operations lag n bit numbers can be
done in constant time, explain how the FFT can be computé&dinlog n) time. You
can assume that andw are known. Note that for positive integersandb, o’ takes
exponential in the length @fto compute, because the result is that long.

(d) Suppose you want to multiply two integer polynomials accurately using the FFT. What
values ofn, k, andp should be chosen to do this?

2. Inthis problem we will compute a coefficient form of a polynomial whose roots@re, , . . ., z,—1
(with possible repetitions) i (n log? n) time.

(a) Design a recursive algorithm to compute a polynomial of degree-bound whose
roots arerg, x1,...,Tn_1.

(b) Give a recurrence describing the time bound of the algorithm and solve it using the
master method described in Section 4.3 of CLRS.



3. We have all learned polynomial division as some point in our lives. The standard algorithm
is O(n?) time wheren is a degree-bound on the the polynomials. To be more specific, let
A(z) and B(z) be two polynomials with complex coefficients, wheBz) # 0. There
are polynomials)(z) and R(z) such thatd(x) = Q(z)B(z) + R(z) wheredeg(R(z)) <
deg(B(x)). The polynomialQ(z) is the quotient andz(x) is the remainder. We will write
Q(z) asA(z)/B(xz) andR(x) asA(x) mod B(x). The goal of this problem is to argue that
polynomial division can be done if(n logn) time. Clearly if we can compute the quotient
Q(z) = A(z)/B(x) then we can compute the remaindefz) = A(z) — Q(x)B(x) with
one polynomial multiplication and a linear number of other operations. This our goal reduces
to computing the quotient i®(n logn) time.

(a) Supposeé3(x) = =™, then argue that division b#(x) takes linear time.

(b) Supposeleg(B(x)) = n—1, then define RECIPROCAIB(x)) = 2?"~2/B(z). Show
how to computed (z)/B(x) using the RECIPROCALB(x)), one polynomial multipli-
cation, and a linear number of other operations.

(c) Given the solution to (b) above, our goal reduces to computing RECIPROBAL))
in O(nlogn) time. For simplicity, assume that is a power of 2 andleg(B(z)) =
n — 1. We can expresB(z) = By(z) + 2™/?B;(z) wheredeg(By(x)) < n/2 — 1 and
deg(Bi(x)) =n/2 — 1. DefineS(z) = RECIPROCAL(B; (x)). Define

U(z) = 25(z)2®?"2 — §(2)?B(x).

Show thatl/ () B(z) = 2°"~* + T'(x) wheredeg(T(x)) < 2n — 3.

(d) Use (c) above to give a recursive algorithm for computing RECIPROGAL:)) when
deg(B(x)) + 1 is a power of 2. The time for your recursive algorithm should be de-
scribed by the recurrencB(n) < T'(n/2) + cnlogn, with T'(1) a constant. Explain
why the recurrence is valid.

(e) Use the master method (Section 4.3) of CLRS to solve the recurrence of part (d).



