
CSE 521
Assignment 5

Due Tuesday, May 6, 2003

1. The FFT can be used as part of an algorithm to multiply polynomials with complex coeffi-
cients. This can be done with some loss of accuracy with floating point numbers. However,
what if we want to multiply polynomials over the integers with total accuracy. In this case we
need an integer like method. To achieve this we can use a large prime numberp and rely on
the fact that the integersmodp are a field with some roots of unity. To be more specific, let
n be a power of 2 and choosek so thatp = kn + 1 is a prime. There is a numberg such that
the set

{g1 mod p, g2 mod p, ..., gp−1 mod p} = {1, 2, . . . , p− 1},

that is, in mathematical termsg is a generator ofZ∗
p . For example ifp = 17 then2 is a

generator ofZ∗
13, but, for example5 is not. Now, letω = gk.

(a) Show thatω is a principaln-th root of unity modp. That is,ωn mod p = 1 and
ωi mod p 6= 1 for 0 < 1 < n. Note that the mappingi → gi on the domain{1, . . . , p−
1} is a one-to-one function for ag a generator ofZ∗

p .

(b) Argue that the DFT and inverse DFT are well defined (non-singular) withω chosen as
a principlen-th root of unity modp.

(c) Assuming thatp is log n bits and that arithmetic operations onlog n bit numbers can be
done in constant time, explain how the FFT can be computed inO(n log n) time. You
can assume thatp andω are known. Note that for positive integersa andb, ab takes
exponential in the length ofb to compute, because the result is that long.

(d) Suppose you want to multiply two integer polynomials accurately using the FFT. What
values ofn, k, andp should be chosen to do this?

2. In this problem we will compute a coefficient form of a polynomial whose roots arex0, x1, . . . , xn−1

(with possible repetitions) inO(n log2 n) time.

(a) Design a recursive algorithm to compute a polynomial of degree-boundn + 1 whose
roots arex0, x1, . . . , xn−1.

(b) Give a recurrence describing the time bound of the algorithm and solve it using the
master method described in Section 4.3 of CLRS.

1



3. We have all learned polynomial division as some point in our lives. The standard algorithm
is O(n2) time wheren is a degree-bound on the the polynomials. To be more specific, let
A(x) andB(x) be two polynomials with complex coefficients, whereB(x) 6= 0. There
are polynomialsQ(x) andR(x) such thatA(x) = Q(x)B(x) + R(x) wheredeg(R(x)) <
deg(B(x)). The polynomialQ(x) is the quotient andR(x) is the remainder. We will write
Q(x) asA(x)/B(x) andR(x) asA(x) mod B(x). The goal of this problem is to argue that
polynomial division can be done inO(n log n) time. Clearly if we can compute the quotient
Q(x) = A(x)/B(x) then we can compute the remainderR(x) = A(x) − Q(x)B(x) with
one polynomial multiplication and a linear number of other operations. This our goal reduces
to computing the quotient inO(n log n) time.

(a) SupposeB(x) = xn, then argue that division byB(x) takes linear time.

(b) Supposedeg(B(x)) = n−1, then define RECIPROCAL(B(x)) = x2n−2/B(x). Show
how to computeA(x)/B(x) using the RECIPROCAL(B(x)), one polynomial multipli-
cation, and a linear number of other operations.

(c) Given the solution to (b) above, our goal reduces to computing RECIPROCAL(B(x))
in O(n log n) time. For simplicity, assume thatn is a power of 2 anddeg(B(x)) =
n− 1. We can expressB(x) = B0(x) + xn/2B1(x) wheredeg(B0(x)) ≤ n/2− 1 and
deg(B1(x)) = n/2− 1. DefineS(x) = RECIPROCAL(B1(x)). Define

U(x) = 2S(x)x(3/2)n−2 − S(x)2B(x).

Show thatU(x)B(x) = x3n−4 + T (x) wheredeg(T (x)) ≤ 2n− 3.

(d) Use (c) above to give a recursive algorithm for computing RECIPROCAL(B(x)) when
deg(B(x)) + 1 is a power of 2. The time for your recursive algorithm should be de-
scribed by the recurrenceT (n) ≤ T (n/2) + cn log n, with T (1) a constant. Explain
why the recurrence is valid.

(e) Use the master method (Section 4.3) of CLRS to solve the recurrence of part (d).

2


