
A New Approach to the Minimum Cut Problem

DAVID R. KARGER

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

CLIFFORD STEIN

Dartmouth College, Hanover, New Hampshire

Abstract. This paper presents a new approach to finding minimum cuts in undirected graphs. The
fundamental principle is simple: the edges in a graph’s minimum cut form an extremely small fraction of
the graph’s edges. Using this idea, we give a randomized, strongly polynomial algorithm that finds the
minimum cut in an arbitrarily weighted undirected graph with high probability. The algorithm runs in
O(n2log3n) time, a significant improvement over the previous Õ(mn) time bounds based on maximum
flows. It is simple and intuitive and uses no complex data structures. Our algorithm can be parallelized to
run in 51# with n2 processors; this gives the first proof that the minimum cut problem can be solved in
51#. The algorithm does more than find a single minimum cut; it finds all of them.
With minor modifications, our algorithm solves two other problems of interest. Our algorithm finds

all cuts with value within a multiplicative factor of a of the minimum cut’s in expected Õ(n2a) time,
or in 51# with n2a processors. The problem of finding a minimum multiway cut of a graph into r
pieces is solved in expected Õ(n2(r21)) time, or in 51# with n2(r21) processors. The “trace” of the
algorithm’s execution on these two problems forms a new compact data structure for representing all
small cuts and all multiway cuts in a graph. This data structure can be efficiently transformed into the
more standard cactus representation for minimum cuts.

Categories and Subject Descriptors: F2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory–graph algorithms,
network problems; G.3 [Probability and Statistics]: probabilistic algorithms (including Monte Carlo);
I1.2 [Algebraic Manipulation]: Algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Graph algorithm, minimum cut, network reliability, parallel
computing, randomized algorithm

D. R. Karger was supported by a National Science Foundation Graduate Fellowship, by NSF Grant CCR
90-10517, NSF Young Investigator Award CCR 93-57849, and grants from Mitsubishi Corporation and OTL.
C. Stein was supported by a Walter Burke Research Initiation Award and NSF Research Award CCR
93-08701.
Authors present addresses: D. R. Karger, MIT Laboratory for Computer Science, Room NE43-321,
545 Technology Square, Cambridge, MA 02139, e-mail: karger@theory.lcs.mit.edu; C. Stein, Depart-
ment of Computer Science, Dartmouth College, 6211 Suslikoff Lab, Hanover, NH 03755, e-mail:
cliff@cs.dartmouth.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and /or a fee.
q 1996 ACM 0004-5411/96/0700-0601 $03.50

Journal of the ACM, Vol. 43, No. 4, July 1996, pp. 601–640.

1. Introduction

1.1. THE PROBLEM. This paper studies the minimum cut problem. Given an
undirected graph with n vertices and m (possibly weighted) edges, we wish to
partition the vertices into two nonempty sets so as to minimize the number (or
total weight) of edges crossing between them. More formally, a cut (A, B) of a
graph G is a partition of the vertices of G into two nonempty sets A and B. An
edge (v, w) crosses cut (A, B) if one of v and w is in A and the other in B. The
value of a cut is the number of edges that cross the cut or, in a weighted graph,
the sum of the weights of the edges that cross the cut. The minimum cut problem
is to find a cut of minimum value.
Throughout this paper, the graph is assumed to be connected, since otherwise

the problem is trivial. We also require that all edge weights be nonnegative
because otherwise the problem is 13-complete by a trivial transformation from
the maximum-cut problem [Garey and Johnson, 1979, page 210]. We distinguish
the minimum cut problem from the s-t minimum cut problem in which we require
that two specified vertices s and t be on opposite sides of the cut; in the
minimum cut problem there is no such restriction.
Particularly on unweighted graphs, solving the minimum cut problem is

sometimes referred to as finding the connectivity of a graph, that is, determining
the minimum number of edges (or minimum total edge weight) that must be
removed to disconnect the graph.

1.2. APPLICATIONS. The minimum cut problem has many applications, some
of which are surveyed by Picard and Queyranne [1982]. We discuss others here.
The problem of determining the connectivity of a network arises frequently in

issues of network design and network reliability [Colbourn 1987]: in a network
with random edge failures, the network is most likely to be partitioned at the
minimum cuts. For example, consider an undirected graph in which each edge
fails with some probability p, and suppose we wish to determine the probability
that the graph becomes disconnected. Let fk denote the number of edge sets of
size k whose removal disconnects the graph. Then the graph disconnection
probability is k fkp

k(1 2 p)m2k. If p is very small, then the value can be
accurately approximated by considering fk only for small values of k. It therefore
becomes important to enumerate all minimum cuts and, if possible, all nearly
minimum cuts [Ramanathan and Colbourn 1987]. In a more recent application
[Karger 1995], this enumeration is used in a fully polynomial time approximation
scheme for the all terminal network reliability problem.
In information retrieval, minimum cuts have been used to identify clusters of

topically related documents in hypertext systems [Botafogo 1993]. If the links in a
hypertext collection are treated as edges in a graph, then small cuts correspond
to groups of documents that have few links between them and are thus likely to
be unrelated.
Minimum cut problems arise in the design of compilers for parallel languages

[Chaterjee et al. 1996]. Consider a parallel program that we are trying to execute
on a distributed memory machine. In the alignment distribution graph for this
program, vertices correspond to program operations and edges correspond to
flows of data between program operations. When the program operations are
distributed among the processors, the edges connecting nodes on different
processors are “cut.” These cut edges are bad because they indicate a need for

602 D. R. KARGER AND C. STEIN

interprocessor communication. Finding an optimum layout of the program
operations requires repeated solution of minimum cut problems in the alignment
distribution graph.
Minimum cut problems also play an important role in large-scale combinato-

rial optimization. Currently the best methods for finding exact solutions to large
traveling salesman problems are based on the technique of cutting planes. The set
of feasible traveling salesman tours in a given graph induces a convex polytope in
a high-dimensional vector space. Cutting plane algorithms find the optimum tour
by repeatedly generating linear inequalities that cut off undesirable parts of the
polytope until only the optimum tour remains. The inequalities that have been
most useful are subtour elimination constraints, first introduced by Dantzig et al.
[1954]. The problem of identifying a subtour elimination constraint can be
rephrased as the problem of finding a minimum cut in a graph with real-valued
edge weights. Thus, cutting plane algorithms for the traveling salesman problem
must solve a large number of minimum cut problems (see Lawler et al. [1985] for
a survey of the area). Padberg and Rinaldi [1990] reported that the solution of
minimum cut problems was the computational bottleneck in their state-of-the-art
cutting-plane based algorithm. They also reported that minimum cut problems
are the bottleneck in many other cutting-plane based algorithms for combinato-
rial problems whose solutions induce connected graphs. Applegate et al. [1995;
personal communication] made similar observations and also noted that an
algorithm to find all nearly minimum cuts might be even more useful.

1.3. HISTORY. Several different approaches to finding minimum cuts have
been investigated. Until recently, the most efficient algorithms used maximum
flow computations. As the fastest known algorithms for maximum flow take
V(mn) time, the best minimum cut algorithms inherited this bound. Recently,
new and slightly faster approaches to computing minimum cuts without comput-
ing maximum flows have appeared. Parallel algorithms for the problem have also
been investigated, but until now processor bounds have been quite large for
unweighted graphs, and no good algorithms for weighted graphs were known.
Previously best results, together with our new bounds, are summarized in

Figure 1, where c denotes the value of the minimum cut.

1.3.1. Flow-Based Approaches. The first algorithm for finding minimum cuts
used the duality between s-t minimum cuts and s-t maximum flows [Ford and

FIG. 1. Bounds for the Minimum Cut Problem.

603A New Approach to the Minimum Cut Problem

Fulkerson 1956; Elias et al. 1956]. Since an s-t maximum flow saturates every s-t
minimum cut, it is straightforward to find an s-t minimum cut given a maximum
flow—for example, the set of all vertices reachable from the source in the residual
graph of a maximum flow forms one side of such an s-t minimum cut. An s-t
maximum flow algorithm can thus be used to find an s-t minimum cut, and
minimizing over all (2

n) possible choices of s and t yields a minimum cut. Gomory and
Hu [1961] introduced the concept of a flow equivalent tree and observed that the
minimum cut could be found by solving only n 2 1 maximum flow problems. In their
classic book Flows in Networks, Ford and Fulkerson [1962] comment on the method
of Gomory and Hu:

Their procedure involved the successive solution of precisely n 2 1 maximal
flow problems. Moreover, many of these problems involve smaller networks
than the original one. Thus, one could hardly ask for anything better.

This attitude was prevalent in the following 25 years of work on minimum cuts.
The focus in minimum cut algorithms was on developing better maximum flow
algorithms and better methods of performing series of maximum flow computa-
tions.
Maximum flow algorithms have become progressively faster over the years.

Currently, the fastest algorithms are based on the push-relabel method of
Goldberg and Tarjan [1988]. Their early implementation of this method runs in
O(nm log(n2/m)) time. Incrementally faster implementations appeared sub-
sequently. Currently, the fastest deterministic algorithms, independently de-
veloped by King et al. [1994] and by Phillips and Westbrook [1993] run in
O(nm(logm/(n log n) n)) time. Randomization has not helped significantly. The
fastest randomized maximum flow algorithm, developed by Cheriyan et al.
[1995] runs in expected O(mn 1 n2log2n) time. Finding a minimum cut by
directly applying any of these algorithms in the Gomory-Hu approach re-
quires V(mn2) time.
There have also been successful efforts to speed up the series of maximum

flow computations that arise in computing a minimum cut. The basic technique is
to pass information among the various flow computations, so that computing all
n maximum flows together takes less time than computing each one separately.
Applying this idea, Podderyugin [1973], Karzanov and Timofeev [1986] and
Matula [1987] independently discovered several algorithms which determine
edge connectivity in unweighted graphs in O(mn) time. Hao and Orlin [1994]
obtained similar types of results for weighted graphs. They showed that the series
of n 2 1 related maximum flow computations needed to find a minimum cut can
all be performed in roughly the same amount of time that it takes to perform one
maximum flow computation. They used the fastest such algorithm, that of
Goldberg and Tarjan, to find a minimum cut in O(mn log(n2/m)) time.

1.3.2. Cuts without Flows. Recently, two approaches to finding minimum cuts
without computing any maximum flows have appeared. One approach, developed
by Gabow [1995], is based on a matroid characterization of the minimum cut
problem. According to this characterization, the minimum cut in a graph is equal
to the maximum number of disjoint directed spanning trees that can be found in
it. Gabow’s algorithm finds the minimum cut by finding such a maximum pack-
ing of trees. This approach finds the minimum cut of an unweighted graph in

604 D. R. KARGER AND C. STEIN

O(cm log(n2/m)) time, where c is the value of the minimum cut. Although flows
are not used, the trees are constructed through a sequence of augmenting path
computations. Rather than computing the minimum cut directly, Gabow’s algo-
rithm computes a flow-like structure that saturates the minimum cut of the
graph. In Karger [1994a], randomization is used to speed up Gabow’s
algorithm to run in Õ(m=c) time with high probability, where Õ(f) denotes
O(f polylog f).
The second new approach bears some similarity to our own work, as it uses no

flow-based techniques at all. The central idea is to repeatedly identify and
contract edges that are not in the minimum cut until the minimum cut becomes
apparent. It applies only to undirected graphs, but they may be weighted.
Nagamochi and Ibaraki [1992] give a procedure called scan-first search that
identifies and contracts an edge that is not in the minimum cut in O(m 1 n log
n) time. This yields an algorithm that computes the minimum cut in O(mn 1 n2

log n) time. Stoer and Wagner [1994] subsequently gave a simplified version of
the Nagamochi and Ibaraki algorithm with the same running time (this simplifi-
cation was subsequently discovered independently by Frank [1994]). Scan-first
search is also used by Gabow [1995] to improve the running time of his matroid
algorithm to O(m 1 c2nlog(n/c)) on undirected graphs. Matula [1993] uses
scan-first search in an algorithm that approximates the minimum cut to within a
multiplicative factor of (2 1 e) in O(m) time.

1.3.3. Parallel Algorithms. Parallel algorithms for the minimum cut problem
have also been explored, though with much less satisfactory results. For undi-
rected unweighted graphs, Khuller and Schieber [1991] gave an algorithm that
uses cn2 processors to find a minimum cut of value c in Õ(c) time; this algorithm
is therefore in 51# when c is polylogarithmic in n (51# is the class of
problems that can be solved by a randomized algorithm in polylogarithmic time
using a PRAM with a polynomial number of processors). For directed un-
weighted graphs, the 51# matching algorithms of Karp et al. [1986] or
Mulmuley et al. [1987] can be combined with a reduction of s-t maximum flow to
matching [Karp et al. 1986] to yield 51# algorithms for s-t minimum cuts. We
can find a minimum cut by performing n of these s-t cut computations in parallel
(number the vertices, and find a minimum v i, v(i11) mod n-cut for each i).
Unfortunately, the processor bounds are quite large–the best bound, using Galil
and Pan’s [1988] adaptation of Karp et al. [1986], is n4.37.
These unweighted directed graph algorithms can be extended to work for

weighted graphs by treating an edge of weight w as a set of w parallel edges. If W
is the sum of all the edge weights, then the number of processors needed is
proportional to W; hence, the problem is not in 51# unless the edge weights are
given in unary. If we combine these algorithms with the scaling techniques of
Edmonds and Karp [1972], as suggested in Karp et al. [1986], the processor count
is mn4.37 and the running times are proportional to log W. Hence, the algorithms
are not in 51# unless W 5 n log

O(1)n.
The lack of an 51# algorithm is not surprising. Goldschlager et al. [1982]

showed that the s-t minimum cut problem on weighted directed graphs is
3-complete. In Section 6.5 we note a simple reduction to their result that proves
that the weighted directed minimum cut problem is also 3-complete. Therefore,

605A New Approach to the Minimum Cut Problem

a (randomized) parallel algorithm for the directed minimum cut problem would
imply that 3 # 1# (51#), which is believed to be unlikely.

1.4. OUR CONTRIBUTION. We present a new approach to the minimum cut
problem that is entirely independent of maximum flows. Our randomized
Recursive Contraction Algorithm runs in O(n2log3n) time—a significant improve-
ment on the previous Õ(mn) bounds. It is slightly faster for a class of graphs that
includes all planar graphs. The algorithm is strongly polynomial—that is, the
number of operations it performs can be bounded by a polynomial independent
of the size of the input numbers. With high probability (that is, with probability
exceeding 1 2 1/n on problems of size n) it finds the minimum cut—in fact, it
finds all minimum cuts. This suggests that the minimum cut problem may be
fundamentally easier to solve than the maximum flow problem. The parallel
version of our algorithm runs in polylogarithmic time using n2 processors on a
PRAM. It thus provides the first proof that the minimum cut problem with
arbitrary edge weights can be solved in 51#. In a contrasting result, we show
that the directed minimum cut problem is 3-complete and thus appears unlikely
to have an 51# solution.
Our algorithm is extremely simple and, unlike the best flow-based approaches,

does not rely on any complicated data structures such as dynamic trees [Sleator
and Tarjan 1983]. The most time consuming steps of the sequential version are
simple computations on arrays, while the most time consuming steps in the
parallel version are sorting and computing connected components. All of these
computations can be performed practically and efficiently.
With slight modifications, the Recursive Contraction Algorithm can be used to

compute minimum multi-way cuts. The minimum r-way cut problem is to find a
minimum weight set of edges whose removal partitions a given graph into r
separate components. Previously, the best known sequential bound, due to
Goldschmidt and Hochbaum [1988], was O(nr

2/ 22r111/ 2), and no parallel algo-
rithm was known. Our algorithm runs in expected Õ(n2(r21)) time, and in 51#
using n2(r21) processors. This shows that the minimum r-way cut problem is in
51# for any constant r. In contrast, it is shown in Dahlhaus et al. [1994] that the
multiway cut problem in which r specified vertices are required to be separated
(i.e., a generalization of the s-t minimum cut problem) is 13-complete for any
r . 2.
An approximately minimum cut is one whose value is within a constant factor of

the value of the minimum cut. Our algorithm can be used to compute all
approximately minimum cuts in polynomial time and in 51#. One application is
to the identification of violated comb inequalities [Applegate et al. 1995]—
another important class of cutting planes for the Traveling Salesman Problem.
Our analysis can also be used to give new theorems regarding the structure and

enumeration of approximately minimal and multiway cuts. In particular, we give
tight bounds on the number of approximately minimum and multiway cuts in a
graph. These results have important applications in the study of network
reliability [Ramanathan and Colbourn 1987]. They have also been used in the
development of fast algorithms for approximate solutions to minimum cut,
maximum flow, and other graph problems [Karger 1994c; 1994a].

606 D. R. KARGER AND C. STEIN

A minor modification of our algorithm lets us use it to construct the cactus
representation of minimum cuts introduced in Dinitz et al. [1970]. We improve
the sequential time bound of this construction to Õ(n2). We give the first 51#
algorithm for weighted graphs, improving the previous (unweighted graph)
processor bound from mn4.5 to n4.
A drawback of our algorithms is that they are Monte Carlo. Monte Carlo

algorithms give the right answer with high probability but not with certainty. For
many problems, such a flaw can be rectified because it is possible to verify a
“certificate” of the correctness of the output and rerun the algorithm if the
output is wrong. This turns the Monte Carlo algorithms into Las Vegas algo-
rithms that are guaranteed to produce the right answer but have a small
probability of taking a long time to do so. Unfortunately, all presently known
minimum cut certificates (such as maximum flows, or the complete intersections
of Gabow [1995]) take just as long to construct when the minimum cut is known
as when it is unknown. Thus we can provide no speedup if a guarantee of the
minimum cut value is desired.
The original Contraction Algorithm with an Õ(mn2) running time and proces-

sor bound, as well as the connections to multiway and approximately minimum
cuts and analyses of network reliability, originally appeared in Karger [1993]. The
improved algorithm with faster running times and processor bounds originally
appeared in Karger and Stein [1993]. This paper combines results from those two
conference papers. Lomonosov [1994] independently developed some of the
basic intuitions leading to the Contraction Algorithm, using them to investigate
questions of network reliability.

1.5. RELATED WORK. Subsequent to the initial presentation of this work
[Karger 1993; Karger and Stein 1993], several related papers based upon it have
appeared. Karger [1994a] used the Contraction Algorithm to prove theorems
about the structure and enumeration of near-minimum cuts. These have led to a
random-sampling approach to cut problems. Karger [1994c] shows how to
approximate the minimum cut to within any constant factor in O(m 1 n log2n)
time sequentially, and to within a factor of 2 in parallel using a linear number of
processors. Algorithms for dynamically maintaining approximate minimum cuts
during edge insertions and deletions are also presented. Karger [1994a] gives an
Õ(m=c)-time Las Vegas algorithm for finding minimum cuts in unweighted
undirected graphs. It also gives techniques for solving other cut-related problems
such as network design. Most recently, Karger [1996] has given sampling-based
minimum cut algorithms with running times of O(n2log n) and O(m log3n).
Benczúr and Karger [1996] have given fast sampling-based algorithms for
approximating s-t minimum cuts. In Karger [1995], the structure of minimum
cuts is used to obtain bounds on the reliability of a network with random edge
failures.
Karger and Motwani [1996] have shown that in fact the minimum cut problem

for weighted graphs is in 1#. Rather than derandomizing the algorithms
presented here, they develop a new algorithm based on the combinatorial aspects
of minimum cuts that follow from this work. Benczur [1994] has used the

607A New Approach to the Minimum Cut Problem

Contraction Algorithm to get improved sequential and parallel algorithms for
augmenting the connectivity of a graph to a given value.

1.6. PRESENTATION OVERVIEW. The starting point of our work is an abstract
formulation of the Contraction Algorithm in Section 2. This extremely simple
algorithm has an V(1/n2) probability of outputting a minimum cut. It is based on
the observation that the edges of a graph’s minimum cut form a very small
fraction of the graph’s edges, so that a randomly selected edge is unlikely to be in
the minimum cut. Therefore, if we choose an edge at random and contract its
endpoints into a single vertex, the probability is high that the minimum cut will
be unaffected. We therefore find the minimum cut by repeatedly choosing and
contracting random edges until the minimum cut is apparent.
Moving from the abstract formulation to a more concrete algorithm divides

naturally into two stages. In the first stage, we show how to efficiently implement
the repeated selection and contraction of edges which forms a single trial of the
Contraction Algorithm. Section 3 uses a simple adjacency matrix scheme to
implement the algorithm in O(n2) time.
The second stage deals with the need for multiple trials of the Contraction

Algorithm. Given the V(1/n2) success probability of the Contraction Algorithm,
repeating it O(n2log n) times gives a high probability of finding the minimum cut
in some trial. However, this yields undesirably high sequential time and parallel
processor bounds of Õ(n4). Thus, in Section 4, we show how the necessary
O(n2log n) trials can share their work so that the total work performed by any
one trial is Õ(1). This gives our Õ(n2) sequential time bounds. In Section 5, we
describe certain modifications needed to make the algorithm strongly polyno-
mial, in particular with respect to its use of random bits.
We then give parallel implementations of the Contraction Algorithm. To

achieve parallelism, we “batch together” numerous selections and contractions,
so that only a few contraction phases are necessary. We present a simple but
slightly inefficient (by logarithmic factors) parallel implementation in Section 6.
This suffices to show that minimum cuts in undirected graphs can be found in
51#. In contrast, in Section 6.5, we show that the corresponding directed graph
problem is 3-complete.
In Section 7, we give an improved implementation of the Contraction Algo-

rithm that runs in linear time sequentially and is more efficient in parallel than
our previous implementation. This gives us improved sequential time bounds on
certain classes of graphs and a more efficient parallel algorithm.
In Sections 8 and 9, we show how to find minimum multiway cuts and

approximate minimum cuts. In Section 10, we discuss the cactus representation
for minimum cuts [Dinitz et al. 1976], and show how the Contraction Algorithm
leads to more efficient algorithms for constructing it. In Section 11, we discuss
how to trade time for space, showing that we can still match the Õ(mn) time
bounds of previous minimum-cut algorithms, even if our computational space is
restricted to O(n).

2. The Contraction Algorithm

In this section, we restrict our attention to unweighted multigraphs (i.e., graphs
that may have multiple edges between one pair of vertices), and present an

608 D. R. KARGER AND C. STEIN

abstract version of the Contraction Algorithm. This version of the algorithm is
particularly intuitive and easy to analyze. In later sections, we will describe how
to implement it efficiently.
The Contraction Algorithm uses one fundamental operation, contraction of

graph vertices. To contract two vertices v1 and v2 we replace them by a vertex v
and let the set of edges incident on v be the union of the sets of edges incident
on v1 and v2. We do not merge edges from v1 and v2 that have the same other
endpoint; instead, we create multiple instances of those edges. However, we
remove self loops formed by edges originally connecting v1 to v2. Formally, we
delete all edges (v1, v2), and replace each edge (v1, w) or (v2, w) with an edge
(v, w). The rest of the graph remains unchanged. We will use G/(v, w) to
denote graph G with edge (v, w) contracted (by contracting an edge, we will
mean contracting the two endpoints of the edge). Extending this definition, for
an edge set F we will let G/F denote the graph produced by contracting all edges
in F (the order of contractions is irrelevant up to isomorphism). An example of
an edge contraction is given in Figure 2.
Assume initially that we are given a multigraph G(V, E) with n vertices and m

edges. The Contraction Algorithm is based on the idea that since the minimum
cut is small, a randomly chosen edge is unlikely to be in the minimum cut. The
Contraction Algorithm, which is described in Figure 3, repeatedly chooses an
edge at random and contracts it.
When the Contraction Algorithm terminates, each original vertex has been

contracted into one of the two remaining “metavertices.” This defines a cut of
the original graph: each side corresponds to the vertices contained in one of
the metavertices. More formally, at any point in the algorithm, we can define
s(a) to be the set of original vertices contracted to a current metavertex a.
Initially s(v) 5 v for each v [V, and whenever we contract (v, w) to create
vertex x we set s(x) 5 s(v) ø s(w). We say a cut (A, B) in the contracted
graph corresponds to a cut (A9, B9) in G, where A9 5 øa[As(a) and B9 5
øb[Bs(b). Note that a cut and its corresponding cut will have the same value,
where we define the value of a cut to be the sum of the weights of the edges
crossing the cut.

FIG. 2. Contraction.

609A New Approach to the Minimum Cut Problem

When the Contraction Algorithm terminates, yielding a graph with two
metavertices a and b, we have a corresponding cut (A, B) in the original graph,
where A 5 s(a) and B 5 s(b).

LEMMA 2.1. A cut (A, B) is output by the Contraction Algorithm if and only if
no edge crossing (A, B) is contracted by the algorithm.

PROOF. The only if direction is obvious. For the other direction, consider two
vertices on opposite sides of the cut (A, B). If they end up in the same
metavertex, then there must be a path between them consisting of edges that
were contracted. However, any path between them crosses (A, B), so an edge
crossing cut (A, B) would have had to be contracted. This contradicts our
hypothesis. e

Lemma 2.1 is also the basis of Nagamochi and Ibaraki’s [1992] minimum cut
algorithm. They give a linear-time deterministic algorithm for identifying and
contracting a non-minimum-cut edge. Doing this n times (for a total running
time of O(mn)) yields two vertices which, by Lemma 2.1, define the minimum
cut of the graph.

THEOREM 2.2. A particular minimum cut in G is returned by the Contraction
Algorithm with probability at least (2

n)21 5 V(n22).

PROOF. Fix attention on some specific minimum cut (A, B) with c crossing
edges. We will use the term minimum cut edge to refer only to edges crossing
(A, B). From Lemma 2.1, we know that if we never select a minimum cut edge
during the Contraction Algorithm, then the two vertices we end up with must
define the minimum cut.
Observe that after each contraction, the minimum cut of the new graph must

still be at least c. This is because every cut in the contracted graph corresponds
to a cut of the same value in the original graph, and thus has value at least c.
Furthermore, if we contract an edge (v, w) that does not cross (A, B), then the
cut (A, B) corresponds to a cut of value c in G/(v, w); this corresponding cut is
a minimum cut (of value c) in the contracted graph.
Each time we contract an edge, we reduce the number of vertices in the graph

by one. Consider the stage in which the graph has r vertices. Since the contracted
graph has a minimum cut value of at least c, it must have minimum degree at
least c, and thus at least rc/ 2 edges. However, only c of these edges are in the
minimum cut. Thus, a randomly chosen edge is in the minimum cut with
probability at most 2/r. The probability that we never contract a minimum cut
edge through all n 2 2 contractions is thus at least

FIG. 3. The Contraction Algorithm.

610 D. R. KARGER AND C. STEIN

S 1 2
2

nD S 1 2
2

n 2 1D · · ·S 1 2
2

3D 5 Sn 2 2

n D Sn 2 3

n 2 1D · · ·S 24D S 13D
5 Sn2D

21

5 V~n22! . e

This bound is tight. In the graph consisting of a cycle on n vertices, there are
(2
n) minimum cuts, one for each pair of edges in the graph. Each of these
minimum cuts is produced by the Contraction Algorithm with equal probability,
namely (2

n)21.
An alternative interpretation of the Contraction Algorithm is that we are

randomly ranking the edges and then constructing a minimum spanning tree of
the graph based on these ranks (using Kruskal’s minimum spanning tree algo-
rithm [Kruskal 1956]). If we remove the heaviest edge in the minimum spanning
tree, the two components that result have an V(n22) chance of defining a
particular minimum cut. This intuition forms the basis of the implementation in
Section 7.
The Contraction Algorithm can be halted when k vertices remain. We refer to

this as contraction to k vertices. The following result is an easy extension of
Theorem 2.2:

COROLLARY 2.3. A particular minimum cut (A, B) survives contraction to k
vertices with probability at least (2

k)/(2
n) 5 V((k/n)2).

2.1. WEIGHTED GRAPHS. Extending the Contraction Algorithm to weighted
graphs is simple. For a given integer-weighted graph G, we consider a corre-
sponding unweighted multigraph G9 on the same set of vertices. An edge of
weight w in G is mapped to a collection of w parallel unweighted edges in G9.
The minimum cuts in G and G9 are the same, so it suffices to run the
Contraction Algorithm on G9. We choose a pair of vertices to contract in G9 by
selecting an edge of G9 uniformly at random. Therefore, the probability that we
contract u and v is proportional to the number of edges connecting u and v in
G9, which is just the weight of the edge (u, v) in G. This leads to the weighted
version of the Contraction Algorithm given in Figure 4.
The analysis of this algorithm follows immediately from the unweighted case.

The analysis also applies to graphs with nonintegral edge weights.

COROLLARY 2.1.1. The Weighted Contraction Algorithm outputs a particular
minimum cut of G with probability V(1/n2).

FIG. 4. The Weighted Contraction Algorithm.

611A New Approach to the Minimum Cut Problem

3. Implementing the Contraction Algorithm

We now turn to implementing the algorithm described abstractly in the previous
section. First, we give a version that runs in O(n2) time and space. Later, we
shall present a version that runs in O(m) time and space with high probability,
and is also parallelizable. This first method, though, is easier to analyze, and its
running time does not turn out to be the dominant factor in our analysis of the
running time of our overall algorithm.
To implement the Contraction Algorithm we use an n 3 n weighted adjacency

matrix, which we denote by W. The entry W(u, v) contains the weight of edge
(u, v), which can equivalently be viewed as the number of multigraph edges
connecting u and v. If there is no edge connecting u and v then W(u, v) 5 0.
We also maintain the optimal (weighted) degree D(u) of each vertex u; thus,
D(u) 5 v W(u, v).
We now show how to implement two steps: randomly selecting an edge and

performing a contraction.

3.1. CHOOSING AN EDGE. A fundamental operation that we need to imple-
ment is the selection of an edge with probability proportional to its weight. A
natural method is the following. First, from edges e1, . . . , em with weights
w1, . . . , wm, construct cumulative weights Wk 5 i51

k wi. Then choose an
integer r uniformly at random from 0, . . . , Wm and use binary search to identify
the edge ei such that Wi21 # r , Wi. This can easily be done in O(log W) time.
While this is not a strongly polynomial bound since it depends on the edge
weights being small, we will temporarily ignore this issue. For the time being,
we assume that we have a black-box subroutine called Random-Select . The
input to Random-Select is a cumulative weight array of length m. Random-
Select runs in O(log m) time and returns an integer between 1 and m, with
the probability that i is returned being proportional to wi. In practice the lack
of strong polynomiality is irrelevant since implementors typically pretend that
their system-provided random number generator can be made to return
numbers in an arbitrarily large range by scaling. We will provide theoretical
justification for using Random-Select by giving a strongly polynomial imple-
mentation of it in Section 5. Note that the input weights to Random-Select
need not be edge weights, but are simply arbitrary measures of proportional-
ity.
We now use Random-Select to find an edge to contract. Our goal is to

choose an edge (u, v) with probability proportional to W(u, v). To do so,
choose a first endpoint u with probability proportional to D(u), and then once u
is fixed choose a second endpoint v with probability proportional to W(u, v).
Each of these two choices requires O(n) time to construct a cumulative weight
array plus one O(log n)-time call to Random-Select , for a total time bound of
O(n).
The following lemma, similar to one used by Klein et al. [1994], proves the

correctness of this procedure.

LEMMA 3.1.1. If an edge is chosen as described above, then Pr[(u, v) is chosen]
is proportional to W(u, v).

612 D. R. KARGER AND C. STEIN

PROOF. Let s 5 vD(v). Then

Pr[choose ~u, v!] 5 Pr[choose u] z Pr[choose ~u , v! uchose u]

1 Pr[choose v] z Pr[choose ~u , v! uchose v]

5
D~u!

s
z
W~u , v!

D~u!
1
D~v!

s
z
W~u , v!

D~v!

5
2W~u, v!

s

}W~u, v! . e

3.2. CONTRACTING AN EDGE. Having shown how to choose an edge, we now
show how to implement a contraction. Given W and D, which represent a graph
G, we explain how to update W and D to reflect the contraction of a particular
edge (u, v). Call the new graph G9 and compute its representation via the
algorithm of Figure 5. Intuitively, this algorithm moves all edges incident on v to
u. The algorithm replaces row u with the sum of row u and row v, and replaces
column u with the sum of column u and column v. It then clears row v and
column v. W and D now represent G9, since any edge that was incident to u or
v is now incident to u and any two edges of the form (u, w) and (v, w) for some
w have had their weights added. Furthermore, the only vertices whose total
weighted degrees have changed are u and v, and D(u) and D(v) are updated
accordingly. Clearly, this procedure can be implemented in O(n) time. Summa-
rizing this and the previous section, we have shown that in O(n) time we can
choose an edge and contract it. This yields the following result:

COROLLARY 3.2.1. The Contraction Algorithm can be implemented to run in
O(n2) time.

Observe that if the Contraction Algorithm has run to completion, leaving just
two vertices u and v, then we can determine the weight of the implied cut by
inspecting W(u, v). In order to contract to k vertices we only need to perform
n 2 k # n edge-contractions.
For the rest of this paper, we will use the Contraction Algorithm as a

subroutine, Contract (G, k), that accepts a weighted graph G and a parameter

FIG. 5. Contracting an Edge.

613A New Approach to the Minimum Cut Problem

k and, in O(n2) time, returns a contraction of G to k vertices. With probability at
least (2

k)/(2
n) (Corollary 2.3), a particular minimum cut of the original graph will

be preserved in the contracted graph. In other words, no vertices on opposite
sides of this minimum cut will have been merged, so there will be a minimum cut
in the contracted graph corresponding to the particular minimum cut of the
original graph.
We can in fact implement the Contraction Algorithm using only O(m) space

(in the worst case m 5 Q(n2), but for sparse graphs using this approach will
save space). We do so by maintaining an adjacency list representation. All the
edges incident to vertex v are in a linked list. In addition, we have pointers
between the two copies of the same edge (v, w) and (w, v). When v and w are
merged, we traverse the adjacency list of v, and for each edge (v, u) find the
corresponding edge (u, v) and rename it to (u, w). Note that as a result of this
renaming the adjacency lists will not be sorted. However, this is easy to deal with.
Whenever we choose to merge two vertices, we can merge their adjacency lists by
using a bucket sort into n buckets based on the edges’ other endpoints; the time
for this merge thus remains O(n) and the total time for the algorithm remains
O(n2).

4. The Recursive Contraction Algorithm

The Contraction Algorithm can be used by itself as an algorithm for finding
minimum cuts. Recall that the Contraction Algorithm has an V(n22) probability
of success. We can therefore repeat the Contraction Algorithm cn2 ln n) times,
and output the smallest cut produced by any of runs of the Contraction
Algorithm. The only way this procedure can fail to find the minimum cut is if all
cn2 ln n runs of the Contraction Algorithm fail to find the minimum cut, but we
can upper bound the probability that this occurs by

S 1 2
1

n2D
cn2 ln n

exp~c ln n! # nc.

Thus we will find the minimum cut with high probability. However, the resulting
sequential running time of Õ(n4) is excessive. We therefore show how to wrap
the Contraction Algorithm within the Recursive Contraction Algorithm. The idea
of this new algorithm is to share the bulk of the work among the O(n2 log n)
Contraction Algorithm trials so as to reduce the total work done.
We begin with some intuition as to how to speed up the Contraction

Algorithm. Consider the contractions performed in one trial of the Contraction
Algorithm. The first contraction has a reasonably low probability of contracting
an edge in the minimum cut, namely 2/n. On the other hand, the last contraction
has a much higher probability of contracting an edge in the minimum cut, namely
2/3. This suggests that the Contraction Algorithm works well initially, but has
poorer performance later on. We might improve our chances of success if, after
partially contracting the graph, we switched to a (possibly slower) algorithm with
a better chance of success on what remains.
One possibility is to use one of the deterministic minimum cut algorithms, such

as that of Nagamochi and Ibaraki [1992] and this indeed yields some improve-
ment. However, a better observation is that an algorithm that is more likely to

614 D. R. KARGER AND C. STEIN

succeed than the Contraction Algorithm is two trials of the Contraction Algo-
rithm.
This suggests the Recursive Contraction Algorithm described in Figure 6. As

can be seen, we perform two independent trials. In each, we first partially
contract the graph, but not so much that the likelihood of the cut surviving is too
small. By contracting the graph until it has n/=2 1 1 vertices, we ensure a
greater than 50% probability of not contracting a minimum cut edge, so we
expect that on the average one of the two attempts will avoid contracting a
minimum cut edge. We then recursively apply the algorithm to each of the two
partially contracted graphs. As described, the algorithms returns only a cut value;
it can easily be modified to return a cut of the given value. Alternatively, we
might want to output every cut encountered, hoping to enumerate all the
minimum cuts.
We now analyze the running time of this algorithm.

LEMMA 4.1. Algorithm Recursive Contract runs in O(n2log n) time.

PROOF. One level of recursion consists of two independent trials of contrac-
tion of G to n/=2 1 1 vertices followed by a recursive call. Performing a
contraction to n/=2 1 1 vertices can be implemented by Algorithm Con-
tract from Section 3 in O(n2) time. We thus have the following recurrence for
the running time:

T~n! 5 2Sn2 1 TS nÎ2 1 1D D . (1)

This recurrence is solved by

T~n! 5 O~n2log n! . e

LEMMA 4.2. Algorithm Recursive-Contract uses O(n2) or O(m log(n2/m))
space (depending on the implementation).

PROOF. We have to store one graph at each level of the recursion. The size
of the graph at the kth level is described by the recurrence n1 5 n; nk11 5
nk/=2 1 1. If we use the original O(n2)-space formulation of the

FIG. 6. The Recursive Contraction Algorithm.

615A New Approach to the Minimum Cut Problem

Contraction Algorithm, then the space required is O(k nk
2) 5 O(n2). To

improve the space bound, we can use the linear-space variant of procedure
Contract . Since at each level the graph has no more than min(m, nk

2) edges
and can be stored using O(min(m, nk

2)) space, the total storage needed is
k O(min(m, nk

2)) 5 O(m log(n2/m)). e

This analysis shows why the running time of the Contraction Algorithm is not
the bottleneck in the Recursive Contraction Algorithm. We shall later present a
linear time (in the number of edges) implementation of the Contraction Algo-
rithm. However, since the recurrence we formulate must apply to the contracted
graphs as well, there is no a priori bound on the number of edges in the graph we
are working with. Therefore, n2 is the only bound we can put on the number of
edges in the graph, and thus on the time needed to perform a contraction to
n/=2 1 1 vertices. Furthermore, the existence of n2 leaves in the recursion
tree gives a lower bound of V(n2) on the running time of Recursive-
Contract , regardless of the speed of Contract . This is why the linear-time
implementation of Contract that we shall give in Section 6 provides no speedup
in general.
We now analyze the probability that the algorithm finds the particular

minimum cut we are looking for. We will say that the Recursive Contraction
Algorithm finds a certain minimum cut if that minimum cut corresponds to one
of the leaves in the computation tree of the Recursive Contraction Algorithm.
Note that if the algorithm finds any minimum cut then it will certainly output
some minimum cut.

LEMMA 4.3. The Recursive Contraction Algorithm finds a particular minimum
cut with probability V(1/log n).

PROOF. Suppose that a particular minimum cut has survived up to some
particular node in the recursion tree. It will survive to a leaf below that node if
two criteria are met: it must survive one of the graph contractions at this node,
and it must be found by the recursive call following that contraction. Each of the
two branches thus has a success probability equal to the product of the
probability that the cut survives the contraction and the probability that the
recursive call finds the cut. The probability that the cut survives the contraction
is, by Corollary 2.3, at least

~n/Î2 1 1!~n/Î2 1 1 2 1!

n~n 2 1!
$ 1/ 2.

In the base case, the probability that a cut survives is at least 1/15. This yields a
recurrence P(n) for a lower bound on the probability of success on a graph of
size n:

P~n! $ 5 1 2 S 1 2
1

2
PS nÎ2 1 1D

2D
1

15

if n $ 7

otherwise.
(2)

616 D. R. KARGER AND C. STEIN

We solve this recurrence through a change of variables. Let pk be the
probability of success of a problem on the kth level of recursion, where a leaf has
level 0. Then the recurrence above can be rewritten and simplified as

p0 5
1

15

pk11 $ 1 2 S 1 2
1

2
pkD 2

5 pk 2
1

4
pk
2.

Let zk 5 4/pk 2 1, so pk 5 4/(zk 1 1). Substituting this in the above
recurrence and solving for zk11 yields

z0 5 59

zk11 5 zk 1 1 1
1

zk
.

Since clearly zk $ 1, it follows by induction that

k , zk , 59 1 2k .

Thus, zk 5 Q(k) and pk 5 4/(zk 1 1) 5 Q(1/k). The depth of recursion is 2
log2 n 1 O(1). Hence, it follows that

P~n! $ p2 log2 n 1 O~1! 5 QS 1

log nD .
In other words, one trial of the Recursive Contraction Algorithm finds any
particular minimum cut with probability V(1/log n).
We note that the cutoff at problems of size 7 is just for ease of analysis. The same

bounds hold, up to constant factors, if the algorithm is run until a 2-vertex graph
remains, or if a deterministic algorithm is used on the problems of size 7. e

Those familiar with branching processes might see that we are evaluating the
probability that the extinction of contracted graphs containing the minimum cut
does not occur before depth 2 log n.

THEOREM 4.4. All minimum cuts in an arbitrarily weighted undirected graph
with n vertices and m edges can be found with high probability in O(n2log3n) time
and O(m log(n2/m)) space.

PROOF. It is known ([Dinitz et al. 1976], see also Lemma 8.4) that there are
at most (2

n) minimum cuts in a graph. Repeating Recursive-Contract
O(log2 n) times gives an O(1/n4) chance of missing any particular minimum cut.
Thus, our chance of missing any one of the at most (2

n) minimum cuts is upper
bounded by O((2

n)/n4) 5 O(1/n2). e

617A New Approach to the Minimum Cut Problem

It is noteworthy that unlike the best algorithms for maximum flow this
algorithm uses straightforward data structures. The algorithm has proven to be
practical and easy to code.
We can view the running of the Recursive Contraction Algorithm as a binary

computation tree, where each vertex represents a graph with some of its edges
contracted and each edge represents a contraction by a factor of approximately
=2. A leaf in the tree is a contracted graph with 2 metavertices and defines a cut,
potentially a minimum cut. The depth of this tree is 2 log2 n 1 O(1), and it thus
has O(n2) leaves. This shows that the improvement over the direct use of n2

trials of the Contraction Algorithm comes not from generating a narrower tree
(those trials also define a “tree” of depth 1 with n2 leaves), but from being able
to amortize the cost of the contractions used to produce a particular leaf.
If it suffices to output only one minimum cut, then we can keep track of the

smallest cut encountered as the algorithm is run and output it afterwards in O(n)
time by unraveling the sequence of contractions that led to it. If we want to
output all the minimum cuts, then this might in fact become the dominant factor
in the running time: there could be n2 such cuts, each requiring O(n) time to
output as a list of vertices on each side of the cut. This is made even worse by the
fact that some minimum cuts may be produced many times by the algorithm.
Applegate [1995; (personal communication)] observed that there is a simple
hashing technique that can be used to avoid outputting a cut more than once. At
the beginning, assign to each vertex a random O(log n)-bit key. Whenever two
vertices are merged by contractions, combine their keys with an exclusive-OR. At
a computation leaf in which there are only two vertices, the two keys of those
vertices form an identifier for the particular cut that has been found. With high
probability, no two distinct cuts we find will have the same identifiers. Thus, by
checking whether an identifier has already been encountered, we can avoid
outputting any cut that has already been output.
An alternative approach to outputting all minimum cuts is to output a concise

representation of them; this issue is taken up in Section 10.
In Karger [1993], several simple implementation of the Contraction Algorithm

for unweighted multigraphs were given. However, in the context of the Recursive
Contraction Algorithm, the unweighted graph algorithms are no longer useful.
This is because our time bound depends on the many subproblems deep in the
recursion tree being small. The contractions reduce the number of vertices in the
subproblems, but need not reduce the number of edges. If we worked with
multigraphs, it is entirely possible that each of the O(n2) subproblems on four
vertices would have n2 edges, causing the algorithm to be slow. Using a weighted
graph algorithm, it becomes possible to merge parallel edges, thus ensuring that
every k vertex graph we encounter has at most k2 edges.

5. Strongly Polynomial Random Selection

In this section, we finish showing how the Recursive Contraction Algorithm can
be implemented in the claimed time bound by implementing the procedure
Random-Select . The input to Random-Select is an array W of length n. This
cumulative weight array is constructed from n weights wi by setting Wk 5 i#k wi.
Procedure Random-Select implements the goal of choosing an index i at
random with probability proportional to weight wi. Although the analysis of this

618 D. R. KARGER AND C. STEIN

section is necessary to prove the desired time bound of Recursive-Contract ,
it is unlikely that it would be necessary to actually implement the procedure
Random-Select in practice. The system supplied random number generator
and rounding will probably suffice.
This problem of nonuniform selection is not new. It has been known for some

time [Knuth and Yao 1976] that the fastest possible algorithm for nonuniform
random selection has expected running time proportional to the entropy of the
distribution being sampled; this section essentially uses similar techniques to get
high probability amortized bounds.
Let M 5 Wn be the sum of all weights. If the edge weights wi (and thus the

total weight M) are polynomial in n, then we use standard methods to implement
Procedure Random-Select in O(log n) time: generate a uniformly distributed
(log M)-bit number k in the range [0, M] (all logs are base 2), and return the
value i such that Wi21 # k , Wi. This can be done even in the model where
only a single random bit, rather than an O(log n)-bit random number, can be
generated in unit time.
When the weights are arbitrary integers that sum to M, the time needed for an

exact implementation is V(log M). However, we can modify the algorithm to
introduce a negligible error and run in O(log n) time. Suppose we know that
only t calls to random-select will be made during the running of our
algorithm. To select an edge from the cumulative distribution, even if the sum of
the edge weights is superpolynomial in n, we let N 5 tn4, generate s uniformly
at random from [0, N], and choose the edge i such that Wi21 , Wns/N , Wi.
The edge that we choose differs from the one that we would have chosen using
exact arithmetic only if Wns/N and Wn(s 1 1)/N specify different indices. But
there can only be at most n such values in the “boundaries” of different indices,
so there are at most n values that we could chose for s that would cause an error.
Thus the probability that we make an error with one selection is less than n/N 5
O(1/tn3) and the probability that we make any errors is O(1/n3). This approach
reflects what is typically done in practice—we simply use the random number
generator available in a system call, perform rounding, and ignore the possible
loss of precision that results.
A drawback of this approach in theory is that even if a particular input to

Random-Select has only two choices, we still need to use V(log t) bits to
generate a selection. Using this approach adds an extra log n factor to the
running time of Random-Select on constant size inputs (which arise at the
leaves of the recursion tree of our algorithm) and thus increases the running time
of Recursive-Contract .
A better approach is the following. Intuitively, we generate the log M random

bits needed to select uniformly from the range [0, M], but stop generating bits
when all possible outcomes of the remaining bits yield the same selection. Given
the length n input, partition the range [0, M] into 2n equal-sized intervals of
length M/ 2n. Use 1 1 log n random bits to select one of the intervals uniformly
at random—this requires O(log n) time spent in binary search among the
cumulative weights. If this interval does not contain any of the cumulative weight
values Wi (which happens with probability 1/2, since at most n of the 2n intervals
can contain one of the cumulative weight values), then we have unambiguously
selected a particular index because the values of the remaining bits in the (log
M)-bit random number are irrelevant. If the interval contains one or more of the

619A New Approach to the Minimum Cut Problem

cumulative values, then divide this one interval into 2n equal-sized subintervals
and again use 1 1 log n bits to select one subinterval. If the subinterval contains
a cumulative weight value, then we subdivide again. Repeat this process until an
index is unambiguously selected. Each subdivision requires O(log n) time and
O(log n) random bits, and successfully identifies an index with probability 1/2.

LEMMA 5.1. On an input of size n, the expected time taken by Random-Select
is O(log n). The probability the Random-Select takes more than t log n time to
finish is O(22t).

PROOF. Each binary search to select a subinterval requires O(log n) time.
Call an interval search a success if it selects a unique index, and a failure if it must
further subdivide an interval. The probability of a success is then at least 1/2. The
total number of interval searches is therefore determined by how many failures
occur before a success. Since each search fails with probability at most 1/2, the
probability that t failures occur before a success is O(22t) and the expected
number of failures preceding the first success is at most 2. e

Remark. Inspection of the above lemma shows that Random-Select can
also be implemented by generating one random bit at a time (rather than log M)
and stopping when the selected interval is unambiguous.

LEMMA 5.2. Suppose that t calls are made to Random-Select on inputs of
size n. Then with probability 1 2 exp(2V(t)), the amortized time for each call is
O(log n).

PROOF. Each interval search in a call requires O(log n) time. It therefore
suffices to prove that the amortized number of interval searches used is O(1),
that is, that the total number is O(t). We use the definitions of success and
failure from the previous lemma. We know the number of successes over the t
calls to Random-Select is t, since each success results in the termination of one
call. The total number of searches is therefore determined by how many trials
occur before the tth success. This number is simply the negative binomial
distribution for the tth success with probability 1/2. Since the chances of success
and failure are equal, we expect to see roughly the same number of successes as
failures, namely t, for a total of 2t trials. The Chernoff bound (cf. Mulmuley
[1994, page 427]) proves the probability that the number of trials exceeds 3t is
exponentially small in t. e

THEOREM 5.3. If n calls are made to Random-Select and each input is of
size nO(1), then with high probability in n the amortized time for Random-Select
on an input of size s is O(log s).

PROOF. Let the ith input have size ni and let t i 5 log ni. From above, we
know that the expected time to run Random-Select on input i is O(t i). We
need to show that the total time to run Random-Select on all the problems is
O(t i) with high probability. Note that the largest value of t i is O(log n).
Call the ith call to Random-Select typical if there are more than 5 log n calls

with the same value t i and atypical otherwise. Since the largest value of t i is O(log
n), there can be only O(log2n) atypical calls. For the ith atypical call, by Lemma
5.1 and the fact that t i 5 O(log n), we know that the time for call i is O(log2n)
with high probability. Thus the time spent in all the atypical calls is O(log4n)

620 D. R. KARGER AND C. STEIN

with high probability. By Lemma 5.2, if i is a typical call then its amortized cost is
O(t i) with high probability in n. Therefore, the total time spent on all calls is
O(log4n 1 t i), which is O(n 1 t i). Since there are n calls made, the
amortized cost for call i is O(1 1 t i) 5 O(log ni). e

We have therefore shown how to implement Random-Select in O(log n)
amortized time on size n inputs, assuming a simple condition on the inputs. To
see that this condition is met in the Recursive Contraction Algorithm, note that
we perform V(n) calls to Random-Select (for example, the ones in the two
calls to Contract at the top level of the recursion), while the largest input is of
size n (since no graph we contract has more vertices). This concludes the proof
of the time bound of the Recursive Contraction Algorithm.

6. A Parallel Implementation

We now show how the Recursive Contraction Algorithm can be implemented in
51#. To do so, we give an m processor 51# implementation of the Contract
by eliminating the apparently sequential nature of the selection and contraction
of edges. Parallelizing Recursive-Contract is then easy.
As a first step, we will show how a series of selections and contractions needed

for the Contraction Algorithm can be implemented in Õ(m) time. The previous
O(n2) time bound arose from a need to update the graph after each contraction.
We circumvent this problem by grouping series of contractions together and
performing them all simultaneously. As before, we focus initially on unweighted
multigraphs. We start by giving our algorithms as sequential ones, and then show
how they can be parallelized.

6.1. USING A PERMUTATION OF THE EDGES. We reformulate the Contraction
Algorithm as follows: Instead of choosing edges one at a time, we begin by
generating a random permutation L of the edges according to the uniform
distribution. Imagine contracting edges in the order in which they appear in the
permutation, until only two vertices remain. This is clearly equivalent to the
abstract formulation of the Contraction Algorithm. We can immediately deduce
that with probability V(n22), a random permutation will yield a contraction to
two vertices that determine a particular minimum cut.
Given a random permutation L of the edges, contracting the edges in the

order specified by the permutation until two vertices remain corresponds to
identifying a prefix L9 of L such that contracting the edges in L9 yields a graph
with exactly two vertices. Equivalently, we are looking for a prefix L9 of edges
such that the graph H 5 (V, L9) has exactly two connected components. Binary
search over L can identify this prefix, because any prefix that is too short will
yield more than two connected components while any prefix that is too long will
yield only one. The correct prefix can therefore be determined using O(log m)
connected component computations, each requiring O(m 1 n) time. The total
running time of this algorithm (given the permutation) is therefore O(m log m).
We can improve this running time by reusing information between the

different connected component computations. Given the initial permutation L,
we first use O(m 1 n) time to identify the connected components induced by
the first m/ 2 edges. If exactly two connected components are induced, we are
done. If only one connected component is induced, then we can discard the last

621A New Approach to the Minimum Cut Problem

m/ 2 edges because the desired prefix ends before the middle edge, and recurse
on the first half of L. If more than two connected components are induced, then
we can contract the first m/ 2 edges all at once in O(m) time by finding the
connected components they induce and relabeling the last m/ 2 edges according
to the connected components, producing a new, m/ 2 edge graph on which we can
continue the search. Either way we have reduced the number of edges to m/ 2 in
O(m 1 n) time. Since the graph is assumed to be connected, we know that n #
m as m decreases. Therefore, if we let T(m) be the time to execute this
procedure on a graph with m edges, then T(m) # T(m/ 2) 1 O(m), which has
solution T(m) 5 O(m). In Figure 7, we formally define this Compact subrou-
tine. Compact takes a parameter k describing the goal number of vertices. Our
running time analysis assumes that k is two. Clearly, running times do not
increase when k is larger. Recall the notation G/F that denotes the result of
contracting graph G by edge set F. We extend this definition as follows. If E is a
set of edges in G, then E/F denotes a corresponding set of edges in G/F: an
edge {v, w} [E is transformed in E/F to an edge connecting the vertices
containing v and w in G/F. Constructing E/F requires merging edges with
identical end-points. Since each endpoint is an integer between 1 and n, we can
use a linear-time sorting algorithm, such as bucket sort, to merge edges. Thus,
Compact runs in O(m) time.

6.2. GENERATING PERMUTATIONS USING EXPONENTIAL VARIATES. The only
remaining issue is how to generate the permutation of edges that is used as the
list L in Compact . To show how the permutation generation can be accom-
plished in 51#, we give in this section an approach to the problem that is easy
to explain but gives somewhat worse than optimal bounds in both theory and
practice. In Section 7, we describe a more efficient (and practical) but harder to
analyze approach.
For unweighted graphs, a simple method is to assign each edge a score chosen

uniformly at random from the unit interval, and then to sort the edges according
to score. To extend this approach to weighted graphs, we use the equivalence
between an edge of weight w in a weighted graph and a set of w parallel edges in
the natural corresponding unweighted multigraph. We use the term, multiedge, to
mean an edge of the multigraph corresponding to the weighted graph, and
simulate the process of generating a random permutation of the multiedges. The
entire multiedge permutation is not necessary in the computation, since as soon

FIG. 7. Procedure Compact.

622 D. R. KARGER AND C. STEIN

as a multiedge is contracted, all the other multiedges with the same endpoints
vanish. In fact, all that matters is the earliest place in the permutation that a
multiedge with particular endpoints appears. This information suffices to tell us
in which order vertices of the graph are merged: we merge u and v before x and
y precisely when the first (u, v) multiedge in the permutation precedes the first
(x, y) multiedge in the permutation. Thus, our goal is to generate an edge
permutation whose distribution reflects the order of first appearance of end-
points in a uniform permutation of the corresponding multigraph edges.
As in the unweighted case, we can consider giving each multiedge a score

chosen uniformly at random from a large ordered set and then sorting according
to score. In this case, the first appearance in the permutation of a multiedge with
w copies is determined by the minimum of w randomly chosen scores. We can
therefore generate an appropriately distributed permutation of the weighted
edges if we give an edge of weight w the minimum of w randomly chosen scores
and sort accordingly.
Consider multiplying each edge weight by some value k, so that an edge of

weight w corresponds to wk multiedges. This scales the value of the minimum cut
without changing its structure. Suppose we give each multiedge a score chosen
uniformly at random from the continuous interval [0, k]. The probability
distribution for the minimum score X among wk edges is then

Pr@X . t# 5 S 1 2
t

kD
wk

.

If we now let k become arbitrarily large, the distribution converges to one in
which an edge of weight w receives a score chosen from the exponential
distribution

Pr@X . t# 5 exp~2wt! .

Thus, assuming we can generate an exponential random variable in O(1) time,
then we can generate a permutation in O(m) time. As in the unweighted case,
we do not actually have to sort based on the scores: once scores are assigned we
can use median finding to split the edge list as needed by Compact in O(m)
time. If all we have is coin flips, it is possible to use them to sample from an
approximately exponential distribution in polylogarithmic time and introduce a
negligible error in the computation. As we shall be describing a better method
later, we only sketch the details of this approach. Perhaps the simplest way to
generate a variable X with probability density function exp(2wt) is to generate
a variable U uniformly distributed in the [0, 1] interval, and then to set X 5
2(ln U)/w. Two obstacles arise in practice. One is that we cannot sample
uniformly from [0, 1]. Instead, we choose an integer M 5 nO(1), select uniformly
from the integers in [1, M] using O(log n) random bits, and then divide by M.
This gives us an approximation U9 to the uniform distribution. Another obstacle
is that we cannot exactly compute logarithms. Instead, given U9, we use the first
O(log n) terms of the Taylor expansion of the natural logarithm to compute an
approximation to ln U9. This gives us an approximation X9 to the desired
exponential distribution. It is now straightforward to show that with high
probability, the permutation that results from these approximate values is exactly

623A New Approach to the Minimum Cut Problem

the same as it would be if we were using exact arithmetic and continuous
distributions. We summarize this in the following lemma:

LEMMA 6.2.1. In logO(1) m time per edge, it is possible to assign to each edge an
approximately exponentially distributed score that, with high probability, yields the
same results in Compact as if we had used exact exponential distributions.

An alternative scheme due to Von Neumann [1951] generates a random
variate with the exact exponential distribution in constant expected time given a
uniform random number generator. Details can be found in Karger [1994b].

6.3. PARALLELIZING THE CONTRACTION ALGORITHM. Parallelizing the previ-
ous algorithms is simple. To generate the permutation, given a list of edges, we
simply assign one processor to each edge and have it generate the (approximate-
ly) exponentially distributed score for that edge in polylogarithmic time. We then
use a parallel sorting algorithm on the resulting scores. Given the permutation, it
is easy to run Compact in parallel. 51# algorithms for connected components
exist that use m/log n processors and run in O(log n) time on a CRCW PRAM
[Shiloach and Vishkin 1982] or even on the EREW PRAM [Halperin and Zwick
1994]. Procedure Compact , which terminates after O(log n) iterations, is thus
easily seen to be parallelizable to run in O(log2 n) time using m processors. As a
result, we have the following:

THEOREM 6.3.1. The Contraction Algorithm can be implemented to run in
51# using m processors on an m edge graph.

Using the linear-processor 51# implementation of Contract , we can give an
efficient 51# algorithm for the minimum cut problem. Consider the computa-
tion tree generated by RECURSIVE-CONTRACT. The sequential algorithm examines
this computation tree using a depth-first traversal of the tree nodes. To solve the
problem in parallel, we instead use a breadth-first traversal. The subroutine
Contract has already been parallelized. We can therefore evaluate our compu-
tation tree in a breadth-first fashion, taking only polylogarithmic time to advance
one level. Since the depth of the tree is logarithmic, and since the total size of all
subproblems at a particular level of the tree is O(n2), we deduce:

THEOREM 6.3.2. The minimum cut problem can be solved in 51# using n2

processors.

The space required is now the space needed to store the entire tree. The
sequential running-time recurrence T(n) also provides a recursive upper bound
on the space needed to store the tree. Thus, the space required is O(n2log3n)
(on the assumption that we perform all O(log2n) trials of the Recursive
Contraction Algorithm in parallel).

6.4. MAXIMIZING PRAM SPEED. If speed is of the utmost importance, we can
decrease the parallel running time to O(log n) on unweighted graphs, even on an
EREW PRAM. We modify the original implementation of a single trial of the
Contraction Algorithm. Recall that in the case of an unweighted graph, a
permutation of the edges can be generated in O(log n) time by assigning a
random score to each edge and sorting. After generating the permutation,
instead of using Compact to identify the correct permutation prefix, we examine
all prefixes in parallel. Each prefix requires a single connected components

624 D. R. KARGER AND C. STEIN

computation, which can be performed in O(log n) time, even on an EREW
PRAM, using m/log n processors [Halperin and Zwick 1994]. We can therefore
perform a single trial of the Contraction Algorithm in O(log n) time using m2

processors. As was mentioned in the overview, running this algorithm n2 log n
times in parallel yields the minimum cut with high probability. All of this takes
O(log n) time. This is, in fact, the best possible asymptotic running time, since
even distinguishing whether a graph is connected (positive connectivity) or
unconnected (0 connectivity) takes V(log n) time (Halperin and Zwick [1994]
based on a reduction from Cook et al. [1986]—a similar lower bound of V(log
n/log log n) for the CRCW model follows from Hastad [1989]). However, the
processor bounds are quite large.

6.5. DIRECTED PROBLEM IS 3-COMPLETE. The previous section indicates a
distinction between minimum cut problems on directed and undirected graphs.
In a directed graph, the s-t minimum cut problem is the problem of finding a
partition of the vertices into two sets S and T, with s [S and t [T, such that
the weight of edges going from S to T is minimized. Note that the weights of
edges going from T to S is not counted in the value of the cut. The s-t minimum
cut problem on directed graphs was shown to be 3-complete [Goldschlager et al.
1982]. A similar result holds for the global minimum cut problem:

LEMMA 6.5.1. The global minimum cut problem is 3-complete for directed
graphs.

PROOF. Given an algorithm the finds global minimum cuts, we find a
minimum s-t cut as follows. We add, for each vertex v, directed edges of infinite
weight from t to v and from v to s. The global minimum cut in this modified
graph must now have s [S and t [T, for otherwise some of the edges of
infinite weight will appear in the cut. Hence, the global minimum cut must be a
minimum s-t cut of the original graph. e

A different reduction [Picard and Ratliff 1975] transforms a directed minimum
s-t cut problem into an undirected minimum s-t cut problem. It follows that the
undirected s-t minimum cut problem is 3-complete as well.

7. A Better Implementation

We now discuss a conceptually more complicated (but still easy to implement)
version of the Contraction Algorithm based on permutations. It has several
advantages, both theoretical and practical, over the exponential variates ap-
proach. First, it does not need to generate exponential variates. Although we
have argued that such a computation can be done in theory, in practice both
approaches we described are more expensive than generating uniform random
numbers. Second, the sequential implementation runs in linear time. As we have
discussed, this will not produce any improvement in the worst-case running time
of the Recursive Contraction Algorithm on arbitrary graphs, since such graphs
might have V(n2) edges. However, it does give a slightly improved time bounds
for finding minimum cuts in certain classes of sparse graphs. Yet another
advantage is that it uses O(m) space without using the pointers and linked lists
needed in the O(m)-space adjacency list version of the sequential implementa-
tion in Section 3. Finally, the parallel version of this algorithm performs less

625A New Approach to the Minimum Cut Problem

work (by several polylogarithmic factors) than the exponential variates imple-
mentation.
As in the exponential variates algorithm of Section 6.2, we generate a

permutation by treating each weighted edge as a collection of parallel un-
weighted edges. Rather than generating scores, we repeatedly simulate the
uniform selection of a multigraph edge by choosing from the graph edges with
probabilities proportional to the edge weights; the order of selection then
determines the order of first appearance of multigraph edges.
Suppose we construct an array of m cumulative edge weights as we did in the

sequential algorithm. We can use the procedure Random-Select to select one
edge at random in O(log m) amortized time. Since it takes O(m) time to
recompute the cumulative distribution, it is undesirable to do so each time we
wish to sample an edge. An alternative approach is to keep sampling from the
original cumulative distribution and to ignore edges if we sample them more than
once. Unfortunately, to make it likely that all edges have been sampled once, we
may need a number of samples equal to the sum of the edge weights. For
example, if one edge contains almost all the weight in the graph, we will
continually select this edge. We solve this problem by combining the two
approaches and recomputing the cumulative distribution only occasionally. For
the time being, we shall assume that the total weight of edges in the graph is
polynomial in n.
An implementation of the Contraction Algorithm called Iterated-Sam-

pling is presented in Figure 8. Take e to be any constant (say 1/2). We choose
s 5 n11e edges from the same cumulative distribution, contract all these edges
at once, recompute the cumulative distribution and repeat.
We now analyze the running time of Iterated-Sampling . We must be

somewhat careful with this analysis because, as in Random-Select , we call
Iterated-Sampling on very small problems that arise in the recursive compu-
tation of Recursive-Contract . Therefore, events that are “low probability”
may actually happen with some frequency in the context of the original call to
Recursive-Contract . We will therefore have to amortize these “low proba-
bility” events over the entire recursion, as we did for Random-Select . To
analyze the running time of Iterated-Sampling , we use the following lem-
mas:

LEMMA 7.1. The worst case running time of Iterated-Sampling is O(n3).

FIG. 8. Iterated-Sampling Implementation.

626 D. R. KARGER AND C. STEIN

PROOF. Each iteration requires O(m 1 s log n) 5 O(n2) time. The first
edge chosen in each iteration will identify a pair of vertices to be contracted;
thus, the number of iterations is at most n. e

LEMMA 7.2. Call an iteration of Iterated-Sampling successful if it finishes
contracting the graph or if it reduces the total weight in the graph by a factor of
2n/s 5 O(n2e) for the next iteration. Then the probability that an iteration is not
successful is exp(2V(n)).

PROOF. We assume that the weight reduction condition does not hold and
show that the iteration must then be likely to satisfy the other success condition.
Consider contracting the edges as they are chosen. At any time, call an edge good
if its endpoints have not yet been merged by contractions. Since Iterated-
Sampling is not aware of the contractions, it may choose non-good edges. The
total weight of edges in the next iteration is simply the total weight of good edges
at the end of this iteration. Suppose that at the start of the iteration the total (all
good) weight is W. By assumption, at the end the total good weight exceeds
2nW/s. Since the total good weight can only decrease as contractions occur, we
know that the total good weight at any time during this iteration exceeds 2nW/s.
It follows that each time an edge is selected, the probability that it will be a

good edge exceeds 2n/s. Given that we perform s selections, the expected
number of good selections exceeds 2n. Then, by the Chernoff bound [Chernoff
1952; cf. Mulmuley 1994], the probability that fewer than n good edges are
selected is exponentially small in n.
The number of contractions performed in an iteration is simply the number of

good edges selected. Thus, by performing more than n good selections, the
iteration will necessarily finish contracting the graph. e

COROLLARY 7.3. On an n vertex graph, the number of Iterated-Sampling
iterations before completion is at most t with probability 1 2 exp(2V(nt)).

PROOF. Recall our assumption that W 5 nO(1). Thus, in the language of
Lemma 7.2, after a constant number of successful iterations Iterated-Sam-
pling will terminate. Thus, the only way for it to take more than t iterations is
for there to be roughly t failures, each with probability exp(2V(n)) according to
Lemma 7.2. e

COROLLARY 7.4. On an n vertex graph, the running time of Iterated-
Sampling is O(t(m 1 n11e)) with probability 1 2 exp(2V(nt)).

Note that we set s 5 n11e to make the analysis easiest for our purposes. A
more natural setting is s 5 m/log m since this balances the time spent sampling
and the time spent recomputing cumulative edge weights. Setting s 5 m/log m
yields the same time bounds, but the analysis is more complicated.

7.1. A STRONGLY POLYNOMIAL VERSION. We now show how to let Iterat-
ed-Sampling remove the assumption that W is polynomial in n, while main-
taining the same running times. The obstacle we must overcome is that the
analysis of the number of iterations of Iterated-Sampling deals with the time
to reduce W to zero. If W is arbitrarily large, this can take an arbitrarily large
number of iterations.

627A New Approach to the Minimum Cut Problem

To solve the problem, we use a very rough approximation to the minimum cut
to ensure that Corollary 7.3 applies even when the edge weights are large. Let w
be the largest edge weight such that the set of edges of weight greater than or
equal to w connects all of G. This is just the minimum weight of an edge in a
maximum spanning tree of G, and can thus be identified in O(m log n) time
using any standard minimum spanning tree algorithm [Cormen et al. 1990]. Even
better, it can be identified in O(m) time by the Compact subroutine if we use
the inverses of the actual edge weights as edge scores to determine the order of
edge contraction. It follows that any cut of the graph must cut an edge of weight
at least w, so the minimum cut has weight at least w. It also follows from the
definition of w that there is a cut that does not cut any edge of weight exceeding
w. This means that the graph has a cut of weight at most mw and hence the
minimum cut has weight at most mw # n2w. This guarantees that no edge of
weight exceeding n2w can possibly be in the minimum cut. We can therefore
contract all such edges, without eliminating any minimum cut in the graph.
Afterwards the total weight of edges in the graph is at most n4w. Since we merge
some edges, we may create new edges of weight exceeding n2w; these could be
contracted as well but it is easier to leave them.
Consider running Iterated-Sampling on this reduced graph. Lemma 7.2

holds unchanged. Since the total weight is no longer polynomial, Corollary 7.3 no
longer holds as a bound on the time to reduce the graph graph weight to 0.
However, it does hold as bounds on the number of iterations needed to reduce
the total remaining weight by a factor of n4, so that it is less than w. Since the
minimum cut exceeds w, the compacted graph at this point can have no cuts,
since any such cut would involve only uncontracted edges and would thus have
weight less than w. In other words, the graph edges that have been sampled up to
this point must suffice to contract the graph to a single vertex. This proves that
Corollaries 7.3 and 7.4 also hold in the case of arbitrary weights.

7.2. SPARSE GRAPHS. Using the new, O(m 1 n11e)-time algorithm allows us
to speed up Recursive Contract on graphs with excluded minors. A minor of
graph G is a graph that can be derived from G by deleting edges and vertices and
contracting edges. A minor-excluded graph is one that does not contain some
particular graph as a minor. Mader [1968] (see also [Ballobás 1986]) proved that
in any minor-excluded graph, all r-vertex minors have O(r) edges (thanks to Uri
Zwick for pointing this out). Planar graphs fall into the class just discussed, as
they exclude K5.
Assume that we have a minor-excluded graph. Then we can be sure that at all

times during the execution of the Recursive Contraction Algorithm the con-
tracted graphs of r vertices will never have more than O(r) edges. We use the
O(m 1 n11e)-time bound of Corollary 7.4 to get an improved running time for
Recursive-Contract .

THEOREM 7.2.1. Let G be a minor-excluded graph. Then with high probability
the Recursive Contraction algorithm finds all minimum cuts of G in O(n2log2n)
time.

PROOF. We need to bound the time spent in all calls to Iterated-
Sampling over all the various calls made to Contract in the computation tree
of Recursive-Contract . An expected time analysis is quite easy. By Corollary

628 D. R. KARGER AND C. STEIN

7.4, the expected time of Iterated-Sampling on a problem with m edges is
O(m 1 n11d). By the assumption about graph minors, this means that the
expected running time of Contract on an r-vertex subproblem will be O(r).
This gives us an improved recurrence for the expected running time:

T~n! 5 2Sn 1 TS nÎ2D D .
This recurrence solve to T(n) 5 O(n2).
To improve the analysis to a high probability result, we consider two cases. At

depths less than log n in the computation tree, where the smallest graph has at
least =n vertices, Corollary 7.4 says that the expected time bound for Iterat-
ed-Sampling is in fact a high probability time bound, so the recurrence holds
with high probability at each node high in the computation tree. Below depth log
n, some of the problems are extremely small. However, Corollary 7.3 proves that
each such problem has a running time that is geometrically distributed around its
expectation. Since there are so many problems (more than n), the Chernoff
bound can be applied to prove that the amortized time per problem is propor-
tional to its expected value with high probability, much as was done to amortize
the time for Random-Select . Thus, at lower depths, the recurrence holds in an
amortized sense with high probability. e

Observe that regardless of the structure of the graph minors, any attempt to
reduce the running time below n2 is frustrated by the need to generate n2

computation leaves in order to ensure a high probability of finding the minimum
cut.

7.3. PARALLEL IMPLEMENTATION. The iterated sampling procedure as also
easy to parallelize. To perform one iteration of Iterated-Sampling in
parallel, we use m/log n 1 n11e processors to first construct the cumulative edge
weights and then perform n11e random selections. We call the selection by
processor 1 the “first” selection, that by processor 2 the “second” selection,
imposing a selection order even though all the selections take place simulta-
neously. We use these selections in the parallel implementation of the procedure
Compact . Corollary 7.4 proves that until the problem sizes in the Recursive-
Contract computation tree are smaller than V(log n), each application of
Iterated-Sampling runs in O(log2n) time with high probability. At levels
below log n, we can use the worst case time bound for Iterated-Sampling to
show that the running time remains polylogarithmic.

8. Approximately Minimum Cuts

The Contraction Algorithm can also be used to find cuts that are not minimum
but are relatively small. The problem of finding all nearly minimum cuts has been
shown to have important ramifications in the study of network reliability, since
such enumerations allow one to drastically improve estimates of the reliability of
a network. This was shown in Ramanathan and Colbourn [1987], where an
O(nk12mk) bound was given for the number of cuts of value c 1 k in a graph
with minimum cut c, and an algorithm with running time O(nk12mk) was given
for finding them. Karger [1995] uses small-cut enumeration as the basis of a fully

629A New Approach to the Minimum Cut Problem

polynomial time approximation scheme for the all-terminal reliability problem.
We begin with some cut-counting results from Karger [1994a].

DEFINITION 8.1. An a-minimal cut is a cut of value within a multiplicative
factor of a of the minimum.

THEOREM 8.2. For k a half-integer, the probability that a particular k-minimal
cut survives contraction to 2k vertices is V((2k

n)21).

PROOF. We consider the unweighted case; the extension to the weighted case
goes as before. The goal is to again apply Lemma 2.1. Let k be a half-integer, and
c the minimum cut, and consider some cut of weight at most kc. Suppose we run
the Contraction Algorithm. If with r vertices remaining we choose a random
edge, then since the number of edges is at least cr/ 2, we take an edge from a cut
of weight kc with probability at most 2k/r. If we do this until r 5 2k, then the
probability that the cut survives is

S 1 2
2k

n D S 1 2
2k

~n 2 1!
D · · · S 1 2

2k

~2k 1 1!
D 5 S n2kD

21

. e

Remark. As with the minimum cut theorem, a ring on n vertices shows this
theorem is tight.

We can use this theorem to find k-minimal cuts. Since we stop before the
number of vertices reaches 2, we still have to finish selecting a cut. Do so by
randomly partitioning the remaining vertices into two groups. Since there are less
than 22k partitions, it follows that the probability of a particular cut being chosen
is at least 222k(2k

n)21.

COROLLARY 8.3. For arbitrary real values of k, the probability that a particular
k-minimal cut is found by the Contraction Algorithm is V((2n)22k).

PROOF. Let r 5 2k. Suppose we contract the graph until there are only r
vertices remaining, and then pick one of the 2 r cuts of the resulting graph
uniformly at random. The probability that a particular k-minimal cut survives the
contraction to r vertices is

S 1 2
2k

n D S 1 2
2k

~n 2 1!
D · · ·S 1 2

2k

r 1 1D 5

Sn 2 2k

n 2 r D
S n

n 2 rD

5

S r2kD
S n2kD

,

where in the above equations we use generalized binomial coefficients for nonin-
tegral arguments (see Knuth [1973, Sections 1.2.5–6] for details). From Knuth

630 D. R. KARGER AND C. STEIN

[1973, Exercise 1.2.6.45], we know that (2k
n) 5 Q(n2k) for fixed k. Since (2k

r) is a
constant independent of n, the overall probability is Q(n22k). Multiplying this
by the probability that we pick the correct one of the 2r ' 22k remaining cuts
yields the desired result. e

It follows from the above proof that we can in fact find all approximately
minimal cuts in polynomial time. The first step towards proving this is a corollary
regarding the number of such cuts that can exist in a graph. This corollary has
other important applications that are investigated in Karger [1994c] and Karger
and Motwani [1996]. Further exploration of this theorem can be found in those
papers.

THEOREM 8.4. In any graph, the number of a-minimal cuts is O((2n)2a).

PROOF. Since the above algorithm outputs only one cut, the survivals of the
different cuts are disjoint events. Thus, the probability that one of the a-minimal
cuts is output is the sum of the probabilities that each is output. This sum must
be less than 1. By Corollary 8.3, every such cut has an V((2n)22a) probability of
being produced by the Contraction Algorithm. The bound on the possible
number of cuts follows. e

A previous bound of O(n2) for the number of minimum cuts was proved by
other means in Dinitz et al. [1976]. No previous bound on the number of cuts by
value was known. Karger [1996] has since improved the bound to O((2a

n)).
Our efficient implementation of the contraction algorithm can be applied to

approximately minimum cuts:

THEOREM 8.5. All cuts with weight within a multiplicative factor a of the
minimum cut can be found in O(n2alog2n) time.

PROOF. Change the reduction factor from =2 to 2a=2 in the Recursive
Contraction Algorithm. Stop when the number of vertices remaining is 2a, and
check all remaining cuts. The recurrence for success probability yields the same
result, while the running time recurrence becomes

T~n! 5 n2 1 2TS n
2aÎ2 D

and solve to the claimed time bound. The probability that any one cut is missed can
be made polynomially small, and thus, since there are only polynomially many
approximately minimal cuts, we will find all of them with high probability. e

Vazirani and Yannakakis [1992] give algorithms for enumerating cuts by rank,
finding the kth smallest cut in O(n3k) time, while we derive bounds based on the
value of a cut relative to the others. They also give a bound of O(n3k21) on the
number of cuts with the kth smallest weight. Note that their bounds are
incomparable with ours.
This theorem gives another way to make the Recursive Contraction Algo-

rithm strongly polynomial. Essentially, we scale and round the edge weights in
such a way that all edges become polynomial sized integers. At the same time,
we arrange that no cut changes in value by more than a small amount; it
follows that the minimum cut in the original graph must be a nearly minimum

631A New Approach to the Minimum Cut Problem

cut in the new graph. Thus, an algorithm that finds all approximately
minimum cuts will find the original minimum cut. We arrange that the
relative change in any cut value is 1/n, so that the running time is changed
only by a constant factor. This method is necessary in the derandomization of
Karger and Motwani [1996].

9. Multiway Cuts

The Contraction Algorithm can also be used to find a minimum weight r-way cut
that partitions the graph into r pieces rather than 2. As before, the key to the
analysis is to apply Lemma 2.1 by bounding the probability p that a randomly
selected graph edge is from a particular minimum r-cut. Throughout, to simplify
our asymptotic notation, we assume r is as constant.

LEMMA 9.1. The number of edges in the minimum r-way cut of a graph with m
edges and n vertices is at most

F 1 2 S 1 2
r 2 1

n D S 1 2
r 2 1

n 2 1D Gm.
PROOF. We use the probabilistic method. Suppose we choose r 2 1 vertices

uniformly at random, and consider the r-way cut defined by taking each of the
chosen vertices alone as one vertex set of the cut and all the other vertices as the
last set. An edge is in an r-way cut if its endpoints are in different partitions. The
probability that a particular edge is in the cut is thus the probability that either of
its endpoints is one of the r 2 1 single-vertex components of the cut, which is
just

1 2 S 1 2
r 2 1

n D S 1 2
r 2 1

n 2 1D .
Let f be the number of edges cut by this random partition, and m the number

of graph edges. The number of edges we expect to cut is m times the probability
that any one edge is cut, that is,

E@ f# 5 F 1 2 S 1 2
r 2 1

n D S 1 2
r 2 1

n 2 1D Gm.
Since f can be no less than the value of the minimum r-way cut, E[f] must also
be no less than the minimum r-way cut. e

The quantity in brackets is thus an upper bound on the probability that a
randomly selected edge is an r-way minimum cut edge.

THEOREM 9.2. Stopping the Contraction Algorithm when r vertices remain yields
a particular minimum r-way cut with probability at least

rS n

r 2 1D
21Sn 2 1

r 2 1 D
21

5 V~n22(r21)! .

632 D. R. KARGER AND C. STEIN

PROOF. By the previous lemma, arguing as in Lemma 2.2, the probability that
a particular minimum r-cut survives the reduction process until there are r
vertices remaining is at least

P
u5r11

n S 1 2
r 2 1

u D S 1 2
r 2 1

u 2 1D
5 P

u5r11

n S 1 2
r 2 1

u D P
u5r11

n S 1 2
r 2 1

u 2 1D
5 rS n

r 2 1D
21Sn 2 1

r 2 1 D
21

. e

COROLLARY 9.3. The probability that a particular minimum r-way cut survives
contraction to k $ r vertices is V((k/n)2(r21)).

COROLLARY 9.4. There are O(n2(r21)) minimum multiway cuts in a graph.

PROOF. Use the same argument as for counting approximately minimum
cuts. e

THEOREM 9.5. For any integral r . 2, all minimum r-way cuts in a graph can be
found with high probability in O(n2(r21) log2n) time, or in 51# using n2(r21)

processors.

PROOF. Apply the Recursive Contraction Algorithm, but contract at each
level by a factor of 2(r21)=2 and stop when r vertices remain. The recurrence for
the probability of success is unchanged. The running time recurrence becomes

T~n! 5 n2 1 2TS n

21/ 2(r21)D
and solves to T(n) 5 O(n2(r21)). The fact that all cuts are found follows as in
the approximately minimal cuts case. e

This is a significant improvement over the previously best known sequential
time bound of O(nr

22r111/ 2) reported in Goldschmidt and Hochbaum [1988].
This also provides the first proof that the multiway cut problem is in 51# for
constant r. The extension of these techniques to approximately minimum multi-
way cuts is an easy exercise that we omit due to the rather complicated notation
needed.

10. Cut Data Structures

Researchers have investigated several representations of the minimum cuts of a
graph. Desirable properties of such representations include small space require-
ments and, perhaps more importantly, the ability to quickly answer queries about
the minimum cuts in the graph. Several representations are known [Dinitz et al.
1976; Gabow 1991]. We concentrate on the cactus representation [Dinitz et al.

633A New Approach to the Minimum Cut Problem

1976]. This data structure represents all (2
n) minimum cuts via an n-node,

O(n)-edge graph. It can be used to quickly identify, for example, all minimum
cuts separating a particular pair of vertices. Karzanov and Timofeev [1986] give
an algorithm for constructing the cactus sequentially; their algorithm is parallel-
ized by Naor and Vazirani [1991]. We describe the general framework of both
algorithms below. The reader is referred to Naor and Vazirani [1991] for a much
more detailed description.

(1) Number the vertices so that each vertex (except vertex 1) is connected to at
least one lower numbered vertex.

(2) For each i $ 2, compute the set Si of minimum cuts that separate vertices
{1, . . . , i 2 1} from vertex i.

(3) Form a cactus out of ø iSi.

Step (2) turns out to be the crux of the algorithm. The sets Si form what we
call the chain representation of minimum cuts, for reasons we now explain. For
our explanation, it is convenient to slightly change our definition of cuts. Given a
cut (A, B), we can identify the cut with either set A or set B since one is a
complement of the other. To make the identification unique we take the set
containing vertex 1. Thus, a cut is simply a set A of vertices containing vertex 1,
and its value is the weight of edges with exactly one endpoint in A. We will say
that the vertices in A are inside the cut, and those in Ā are outside the cut. We let
the size of a cut be the number of vertices in its representative set.
Given the numbering of Step (1) and our redefinition of cuts, each Si has a

particularly nice structure. Namely, given any two cuts A and A9 in Si, either A
, A9 or A9 , A. This property is typically referred to the noncrossing cut
property. It follows that the cuts in Si form a chain, that is, the cuts can be
numbered as Ai such that A1 , A2 , . . . , Ak. Therefore, it is easy to
represent each set Si in O(n) space, meaning that the Si form an O(n2)-size
chain representation of the minimum cuts of G.
We now consider the implementation of the cactus construction. Step (1) of

the algorithm can be implemented easily: find a spanning tree of G and then
number the vertices according to a preorder traversal. This can be done in O(m)
time sequentially and also in O(log n) time using m/log n processors in parallel
[Karp and Ramachandran 1990]. Step (3) can also be implemented relatively
efficiently. Karzanov and Timofeev [1986] describe a sequential implementation
that, given the set of chains for each Si, takes O(n

2) time. Naor and Vazirani
[1991] do not explicitly bound their implementation of Step (3), but it can be
shown to run in O(log2n) time using n4 processors. For both the sequential and
parallel algorithms, the bottleneck in performance turned out to be Step (2),
constructing the chain representation.

10.1. CONSTRUCTING THE CHAIN REPRESENTATION. In Step (2), each Si can
be found via a maximum flow computation and a strongly connected components
computation and thus Step (2) can be done by n such computations. This led to
a sequential algorithm that took Õ(n2m) time [Karzanov and Timofeev 1986]
and an O(log2n) time randomized algorithm that used n4.5m processors on
unweighted graphs [Naor and Vazirani 1991]. We will explain how to implement
Step (2) to run using the same amount of resources as the Recursive Contraction

634 D. R. KARGER AND C. STEIN

Algorithm (up to constant factors), thus leading to improved sequential time and
parallel processor bounds.
Suppose that for each vertex number j, we know the size of the smallest cut in

Si containing j (that is, with j on the same side as vertex 1). Then it is
straightforward to construct Si in O(n) time. Bucket-sort the vertices according
to the smallest Si-cut containing them. Those inside the smallest cut form A1;
those inside the next smallest form A2 2 A1, and so on. Therefore, we have
reduced the problem of constructing the Si to the following: for each i and j,
identify the smallest Si-cut containing j. We now show how to modify the
Recursive Contraction Algorithm to recursively compute this information. For
simplicity, assume that we have already run the Recursive Contraction Algorithm
once so that the value of the minimum cut is known.
We begin by adding two information fields to each metavertex v that arises

during the Recursive Contraction Algorithm’s execution. Let size(v) be the
number of vertices contained in v, and let min(v) be the smallest label of a
vertex in v. Note that these two quantities are easy to update as the algorithm
executes; when we merge two metavertices, the updated values are determined in
constant time by a sum and a minimum operation. Now consider a leaf in the
computation tree of the Recursive Contraction Algorithm. One metavertex v in
this leaf will have min(v) 5 1 while the other metavertex w will have min(w) 5
i for some i. If this leaf corresponds to a minimum cut of G, then we call it an
i-leaf. Each i-leaf must correspond to a cut in Si, since by the labeling, vertices
1, . . . , i 2 1 must be in v while vertex i must be in w. Furthermore, size(v),
which we also call the size of the i-leaf, is just the number of vertices inside the
corresponding minimum cut. We have therefore reduced our chain construction
problem to the following: for each pair of labels i and j, find the minimum size
i-leaf containing j (where we identify an i-leaf with the cut (set of vertices) it
represents).
We solve this problem by generalizing it while running the Recursive Contrac-

tion Algorithm. Consider some graph G which arises at some point in the
computation tree. We solve the following problem: for each pair of labels i and j
of vertices in G, consider all i-leaves that are descendants of G and find mG

i (j),
the smallest i-leaf descendant of G containing j. Recalling that in the computa-
tion tree G has two contracted graphs G9 and G0 as children, we show that it is
easy to compute mG

i from mG9
i and mG0

i . Note that each i-leaf descended from G
is descended from either G9 or G0. Consider graph G9. The metavertices with
labels i and j in G are merged into metavertices with labels i9 and j9 in G9.
Suppose i Þ i9. Then there is no vertex labeled i in G9, and it follows by
induction that there is no i-leaf descended from G9. If i 5 i9, then the smallest
i-leaf descendent of G9 containing j is just the smallest i9-leaf descendant of G9
containing j9, namely mG9

i9 (j9). Applying the same argument to G0, it follows that

mG
i ~ j! 5 min~mG9

i ~ j9! , mG0
i ~ j9!! ,

where mG
i () is defined to be infinite if there is no vertex labeled i in G.

We have therefore shown that, after the recursive calls to G9 and G0 which
return mG9 and mG0, the new mG

i (j) can be computed in constant time for each
pair of labels i and j in G. Therefore, if G has n vertices and thus n labels, the
time to compute all mG

i (j) is O(n2). Since the original contraction algorithm

635A New Approach to the Minimum Cut Problem

already performs O(n2) work at each size n graph in the computation, the
additional O(n2) work does not affect the running time bound. This procedure is
easy to parallelize, as computing mG

i (j) for all pairs i and j can be done
simultaneously, and the sorting can also be done efficiently in 1#.
Finally, recall that we run the Recursive Contraction Algorithm Q(log2n)

times in order to get a high probability of finding every minimum cut. It is
trivial to combine the resulting m values from these Q(log2 n) computations in
O(n2 log2n) time or with the same number of processors in O(log n) time. We
have therefore shown:

THEOREM 10.1. The chain representation of minimum cuts in a weighted
labeled graph can be computed with high probability in O(n2log3n) time, or in 51#
using n2 processors.

COROLLARY 10.2. The cactus representation of minimum cuts in a graph can be
computed in O(n2log3n) time or in 51# using n4 processors.

11. Optimizing Space

In this section, we show how the Contraction Algorithm can be implemented to
run in O(n) space, though with an increase in running time. The Union–Find
data structure of Tarjan [1983, page 23] provides for an implementation of the
Contraction Algorithm. We use the Union–Find data structure to identify sets of
vertices that have been merged by the contractions. Initially, each vertex is in its
own set. We repeatedly choose an edge at random, and apply a union operation
to its endpoints’ sets if they do not already belong to the same set. We continue
until only two sets remain. Each choice of an edge requires one find operation,
and we will also perform a total of n 2 2 union operations. Furthermore, after
O(m log m) random selections, the probability is high that we will have selected
each edge at least once. Thus, if the graph is connected, we will have contracted
to two vertices by this time. Therefore the total running time of the Contraction
Algorithm will be O(m log m) with high probability. The use of path compres-
sion in the union-find data structure provides no improvement in this running
time, which is dominated by the requirement that every edge be sampled at least
once.
The results of this section can be summarized as follows:

THEOREM 11.1. On unweighted graphs, the Contraction Algorithm can be
implemented to run in O(m log m) time and O(n) space with high probability.

We can find a minimum cut by running this algorithm O(n2log n) times and
taking the best result. An improved approach is the following.

COROLLARY 11.2. Using s $ n space, it is possible to find the minimum cut in
an unweighted graph in Õ(n2 1 mn2/s) time with high probability.

PROOF. Use the modified contraction algorithm above to contract the graph
to =s vertices in Õ(m) time. At this point, the entire contracted graph has O(s)
edges and can therefore be represented in s space. Therefore, we can run the
Recursive Contraction Algorithm in time Õ(s) to find the minimum cut. The
probability that the minimum cut survives the contraction to =s vertices is

636 D. R. KARGER AND C. STEIN

V(s/n2), so we need to repeat this whole procedure Õ(n2/s) times. This gives an
overall running time of Õ((m 1 s)n2/s) 5 Õ(n2 1 mn2/s). e

We can extend this unweighted-graph approach to weighted graphs, although
the time bound becomes worse. As before, we use the union-find data structure
of Tarjan [1983] to contract edges as we select them. Instead of maintaining a list
of all unsampled edges, we maintain a threshold X(t) such that any edge of
weight exceeding X(t) has a high probability of being sampled within t trials.
After time t we sample only from among those edges that have weight less than
this threshold. This gives a running time of O(m log W).

12. Conclusions

We have given efficient and simple algorithms for the minimum cut problem, yet
several interesting open questions remain. Karger [1996] has given faster mini-
mum cut algorithms: one with running time O(m log3n) and a simpler one with
running time O(n2 log n). An obvious open question is therefore: how close to
linear-time can we get in solving the minimum cut problem in theory and in
practice?
Another question is the extent to which randomization is needed. Karger and

Motwani [1996] have used the Contraction Algorithm to prove that the minimum
cut can be found in 1#; however, the resulting processor bounds are prohibi-
tively large for practical purposes.
An important first step towards derandomization would be a so-called Las

Vegas algorithm for minimum cuts. The Recursive Contraction Algorithm has a
very high probability of finding a minimum cut, but there is no fast way to prove
that it has done so, as all known certificates for a minimum cut, such as a
maximum flow, or Gabow’s the complete intersections [Gabow 1995], take too
long to compute. The Contraction Algorithm is thus Monte Carlo. The same
applies to the faster algorithms of Karger [1996]. A fast Las Vegas Algorithm for
unweighted graphs is given in Karger [1994a], but the running time does not
match the Monte Carlo algorithms’.
Since we are now able to find a minimum cut faster than a maximum flow, it is

natural to ask whether it is any easier to compute a maximum flow given a
minimum cut. Ramachandran [1987] has shown that knowing an s-t minimum cut
is not helpful in finding an s-t maximum flow. However, the question of whether
knowing any or all minimum cuts may help to find an s-t maximum flow remains
open.
Another obvious question is whether any of these results can be extended to

directed graphs. It seems unlikely that the Contraction Algorithm, with its
inherent parallelism, could be applied to the 3-complete directed minimum cut
problem. However, the question of whether it is easier to find a minimum cut
than a maximum flow in directed graphs remains open.
The minimum cut algorithm of Gomory and Hu [1961] not only found the

minimum cut, but found a flow equivalent tree that succinctly represented the
values of the (2

n) minimum cuts. No algorithm is known that computes a flow
equivalent tree or the slightly stronger Gomory–Hu tree in time that is less than
the time for n maximum flows. An intriguing open question is whether the
methods in this paper can be extended to produce a Gomory–Hu tree.

637A New Approach to the Minimum Cut Problem

ACKNOWLEDGMENTS. We thank David Applegate for providing us with timely
information about cutting plane based algorithms for the traveling salesman
problems. We also thank Tom Cormen and Philip Klein for helpful conversa-
tions, Daphne Koller for her comments, Jan Avid Sorenson for observing that
Theorem 8.5 could be improved, and Uri Zwick for references on graph minors.

REFERENCES

APPELGATE, D., BIXBY, R., CHVÁATAL, V., AND COOK, W. 1995. Finding cuts in the tsp. Tech. Rep.
95-05. DIMACS, Rutgers Univ., New Brunswick, N.J.

BENCZÚR, A. A. 1994. Augmenting undirected connectivity in RNC and in randomized Õ(n3)
time. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (Montreal, Que.,
Canada, May 23–25). ACM, New York, pp. 658–667.

BENCZÚR, A. A., AND KARGER, D. R. 1996. Approximate s-t minimum cuts in Õ(n2) time. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (Philadelphia, Pa., May
22–24). ACM, New York, pp. 47–55.

BOLLOBÁS, B. 1986. Extremal graph theory with emphasis on probabilistic methods. Number 62 in
Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I.

BOTAFOGO, R. A. 1993. Cluster analysis for hypertext systems. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval
(Pittsburgh, Pa., June 27–July 1). ACM, New York, pp. 116–125.

CHATERJEE, S., GILBERT, J. R., SCHREIBER, R., AND SHEFFLER, T. J. 1996. Array distribution in
parallel programs. In Languages and Compilers for Parallel Computing. Lecture Notes in Computer
Science Series, vol. 869. Springer-Verlag, New York, pp. 76–91.

CHERIYAN, J., AND HAGERUP, T. 1995. A randomized maximum-flow algorithm. SIAM J. Comput.
24, 2 (Apr.), 203–226.

CHERNOFF, H. 1952. A measure of the asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Ann. Math. Stat. 23, 493–509.

COLBOURN, C. J. 1987. The Combinatorics of Network Reliability, vol. 4 of The International Series
of Monographs on Computer Science. Oxford University Press.

COOK, S., DWORK, C., AND REISCHUK, R. 1986. Upper and lower bounds for parallel random
access machines without simultaneous writes. SIAM J. Comput. 15, 1 (Feb.), 87–97.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. MIT Press,
Cambridge, Mass.

DAHLHAUS, E., JOHNSON, D. S., PAPADIMITRIOU, C. H., SEYMOUR, P. D., AND YANNAKAKIS, M. 1994.
The complexity of multiway cuts. SIAM J. Comput. 23, 4, 864–894.

DANTZIG, G. B., FULKERSON, D. R., AND JOHNSON, S. M. 1954. Solution of a large-scale traveling
salesman problem. Op. Res. 2, 393–410.

DINITZ, E. A., KARZANOV, A. V., AND LOMONOSOV, M. V. 1976. On the structure of a family of
minimum weighted cuts in a graph. In Studies in Discrete Optimization, A. A. Fridman, ed. Nauka
Publishers.

EDMONDS, J., AND KARP, R. M. 1972. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19, 2 (Apr.), 248–264.

ELIAS, P., FEINSTEIN, A., AND SHANNON, C. E. 1956. Note on maximum flow through a network.
IRE Trans. Inf. Theory IT-2, 117–199.

FORD, JR., L. R., AND FULKERSON, D. R. 1956. Maximal flow through a network. Can. J. Math. 8,
399–404, 1956.

FORD, JR., L. R., AND FULKERSON, D. R. 1962. Flows in Networks. Princeton University Press,
Princeton, N.J.

FRANK, A. 1994. On the edge-connectivity algorithm of Nagamochi and Ibaraki. Labarotoire
Artemis, IMAG, Université J. Fourier, Grenoble, Switzerland.

GABOW, H. N. 1991. Applications of a poset representation to edge connectivity and graph
rigidity. In Proceedings of the 32nd Annual Symposium on the Foundations of Computer Science,
IEEE Computer Society Press, pp. 812–821.

GABOW, H. N. 1995. A matroid approach to finding edge connectivity and packing arborescences.
J. Comput. Syst. Sci. 50, 2 (Apr.), 259–273.

GALIL, Z., AND PAN, V. 1988. Improved processor bounds for combinatorial problems in 51#.
Combinatorica 8, 189–200.

638 D. R. KARGER AND C. STEIN

GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco, Calif.

GOLDBERG, A. V., AND TARJAN, R. E. 1988. A new approach to the maximum-flow problem. J.
ACM 35, 921–940.

GOLDSCHLAGER, L. M., SHAW, R. A., AND STAPLES, J. 1982. The maximum flow problem is
logspace complete for P. Theoret. Comput. Sci. 21, 105–111.

GOLDSCHMIDT, O., AND HOCHBAUM, D. 1988. Polynomial algorithm for the k-cut problem. In
Proceedings of the 29th Annual Symposium on the Foundations of Computer Science. IEEE
Computer Society Press, pp. 444–451.

GOMORY, R. E., AND HU, T. C. 1961. Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9, 4
(Dec.), 551–570.

HALPERIN, S., AND ZWICK, U. 1994. An optimal randomized logarithmic time connectivity algo-
rithm for the EREW PRAM. In Proceedings of the 6th Annual ACM–SIAM Symposium on Parallel
Algorithms and Architectures. ACM, New York, pp. 1–10.

HAO, J., AND ORLIN, J. B. 1994. A faster algorithm for finding the minimum cut in a directed
graph. J. Algorithms 17, 3, 424–446.

HASTAD, J. 1989. Almost optimal lower bounds for small depth circuits. Adv. Comput. Res. 5,
143–170.

KARGER, D. R. 1993. Global min-cuts in 51# and other ramifications of a simple mincut
algorithm. In Proceedings of the 4th Annual ACM–SIAM Symposium on Discrete Algorithms. ACM,
New York, pp. 21–30.

KARGER, D. R. 1994a. Random sampling in cut, flow, and network design problems. In Proceed-
ings of the 26th ACM Symposium on Theory of Computing (Montreal, Que., Canada, May 23–25).
ACM, New York, pp. 648–657.

KARGER, D. R. 1994b. Random sampling in graph optimization problems. Ph.D. dissertation.
Stanford Univ., Stanford, Calif. Contact at karger@lcs.mit.edu . Available by ftp from theory.
lcs.mit.edu , directory pub/karger .

KARGER, D. R. 1994c. Using randomized sparsification to approximate minimum cuts. In Proceed-
ings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, pp.
424–432.

KARGER, D. R. 1995. A randomized fully polynomial time approximation scheme for the all
terminal network reliability problem. In Proceedings of the 27th Annual ACM Symposium on Theory
of Computing (Las Vegas, Nev., May 29–June 1). ACM, New York, pp. 11–17.

KARGER, D. R. 1996. Minimum cuts in near-linear time. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (Philadelphia, Pa., May 22–24). ACM, New York, pp. 56–63.

KARGER, D. R., AND MOTWANI, R. 1996. Derandomization through approximation: An 1#
algorithm for minimum cuts. SIAM J. Comput. To appear.

KARGER, D. R., AND STEIN, C. 1993. An Õ(n2) algorithm for minimum cuts. In Proceedings of the
25th Annual ACM Symposium on Theory of Computing (San Diego, Calif., May 16–18). ACM, New
York, pp. 757–765.

KARP, R. M., AND RAMACHANDRAN, V. 1990. Parallel algorithms for shared memory machines. In
Handbook of Theoretical Computer Science, vol. A. J. van Leeuwen, ed. MIT Press, Cambridge,
Mass. pp. 869–932.

KARP, R. M., UPFAL, E., AND WIGDERSON, A. 1986. Constructing a perfect matching is in random
1#. Combinatorica 6, 1, 35–48.

KARZANOV, A. V., AND TIMOFEEV, E. A. 1986. Efficient algorithm for finding all minimal edge
cuts of a non-oriented graph. Cybernetics 22, 156–162.

KHULLER, S., AND SCHIEBER, B. 1991. Efficient parallel algorithms for testing connectivity and
finding disjoint s-t paths in graphs. SIAM J. Comput. 20, 2, 352–375.

KING, V., RAO, S., AND TARJAN, R. E. 1994. A faster deterministic maximum flow algorithm. J.
Algorithms 17, 3 (Nov.), 447–474.

KLEIN, P., PLOTKIN, S. A., STEIN, C., AND TARDOS, E. 1994. Faster approximation algorithms for
the unit capacity concurrent flow problem with applications to routing and finding sparse cuts.
SIAM J. Comput. 23, 3, 466–487.

KNUTH, D. E. 1973. Fundamental Algorithms. Vol. 1 of The Art of Computer Programming.
Addison-Wesley, Reading, Pa.

639A New Approach to the Minimum Cut Problem

KNUTH, D. E., AND YAO, A. E. 1976. The complexity of nonuniform random number generation.
In Algorithms and Complexity: New Directions and Recent Results, Joseph F. Traub, ed. Academic
Press, New York, pp. 357–428.

KRUSKAL, JR., J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. AMS 7, 1, 48–50.

LAWLER, E. L., LENSTRA, J. K., RINOOY KAN, A. H. G., AND SHMOYS, D. B., EDS. 1985. The
Traveling Salesman Problem. Wiley, New York.

LOMONOSOV, M. V. 1994. On Monte Carlo estimates in network reliability. Prob. Eng. Inf. Sci. 8,
245–264.

MADER, W. 1968. Homomorphiesätze für graphen. Math. Ann. 178, 154–168.
MATULA, D. W. 1986. Determining edge connectivity in O(nm). In Proceedings of the 28th Annual
Symposium on the Foundations of Computer Science. IEEE Computer Society Press, pp. 249–251.

MATULA, D. W. 1993. A linear time 2 1 e approximation algorithm for edge connectivity. In
Proceedings of the 4th Annual ACM–SIAM Symposium on Discrete Algorithms. ACM, New York, pp.
500–504.

MULMULEY, K. 1994. Computational Geometry. Prentice-Hall, Englewood Cliffs, N.J.
MULMULEY, K., VAZIRANI, U. V., AND VAZIRANI, V. V. 1987. Matching is as easy as matrix
inversion. Combinatorica 7, 1, 105–113.

NAGAMOCHI, H., AND IBARAKI, T. 1992. Computing edge connectivity in multigraphs and capaci-
tated graphs. SIAM J. Disc. Math. 5, 1 (Feb.), 54–66.

NAOR, D., AND VAZIRANI, V. V. 1991. Representing and enumerating edge connectivity cuts in
51#. In Proceedings of the 2nd Workshop on Algorithms and Data Structures, F. Dehne, J. R. Sack,
and N. Santoro, eds. Lecture Notes in Computer Science, Vol. 519. Springer-Verlag, New York, pp.
273–285.

PADBERG, M., AND RINALDI, G. 1990. An efficient algorithm for the minimum capacity cut
problem. Math. Prog. 47, 19–39.

PHILLIPS, S., AND WESTBROOK, J. 1993. Online load balancing and network flow. In Proceedings of
the 25th Annual ACM Symposium on Theory of Computing (San Diego, Calif., May 16–18). ACM,
New York, pp. 402–411.

PICARD, J. C., AND QUEYRANNE, M. 1982. Selected applications of minimum cuts in networks.
I.N.F.O.R: Can. J. Oper. Res. Inf. Proc. 20, (Nov.), 394–422.

PICARD, J. C., AND RATLIFF, H. D. 1975. Minimum cuts and related problems. Networks 5,
357–370.

PODDERYUGIN, V. D. 1973. An algorithm for finding the edge connectivity of graphs. Vopr. Kibern.
2, 136.

RAMACHANDRAN, V. 1987. Flow value, minimum cuts and maximum flows. Manuscript.
RAMANATHAN, A., AND COLBOURN, C. 1987. Counting almost minimum cutsets with reliability
applications. Math. Prog. 39, 3 (Dec.), 253–261.

SHILOACH, Y., AND VISHKIN, U. 1982. An O(log n) parallel connectivity algorithm. J. Algorithms 3,
57–67.

SLEATOR, D. D., AND TARJAN, R. E. 1983. A data structure for dynamic trees. J. Comput. Syst. Sci.
26, 3 (June), 362–391.

STOER, M., AND WAGNER, F. 1994. A simple min cut algorithm. In Proceedings of the 1994
European Symposium on Algorithms, Jan van Leeuwen, ed. Springer-Verlag, New York, pp.
141–147.

TARJAN, R. E. 1983. Data structures and network algorithms. In CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 44. SIAM, Philadelphia, Pa.

VAZIRANI, V. V., AND YANNAKAKIS, M. 1992. Suboptimal cuts: Their enumeration, weight, and
number. In Automata, Languages and Programming. 19th International Colloquium Proceedings.
Lecture Notes in Computer Science, Vol. 623. Springer-Verlag, New York, pp. 366–377.

VON NEUMANN, J. 1951. Various techniques used in connection with random digits. Nat. Bur.
Stand. Appl. Math Ser. 12, 36–38.

RECEIVED JULY 1994; REVISED MAY 1995; ACCEPTED MARCH 1996

Journal of the ACM, Vol. 43, No. 4, July 1996.

640 D. R. KARGER AND C. STEIN

