
Natural Language Processing (CSE 517):
Text Classification

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 20, 2018

1 / 66



Text Classification

Input: a piece of text x ∈ V†, usually a document (r.v. X) Output: a label from a
finite set L (r.v. L)

Standard line of attack:

1. Human experts label some data.

2. Feed the data to a supervised machine learning algorithm that constructs an
automatic classifier classify : V† → L

3. Apply classify to as much data as you want!

Note: we assume the texts are segmented already, even the new ones.
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Text Classification: Examples

I Library-like subjects (e.g., the Dewey decimal system)

I News stories: politics vs. sports vs. business vs. technology ...

I Reviews of films, restaurants, products: postive vs. negative

I Author attributes: identity, political stance, gender, age, ...

I Email, arXiv submissions, etc.: spam vs. not

I What is the reading level of a piece of text?

I How influential will a scientific paper be?

I Will a piece of proposed legislation pass?

Closely related: relevance to a query.
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Evaluation

Accuracy:

A(classify) = p(classify(X) = L)

=
∑

x∈V†,`∈L

p(X = x, L = `) ·
{

1 if classify(x) = `
0 otherwise

=
∑

x∈V†,`∈L

p(X = x, L = `) · 1 {classify(x) = `}

where p is the true distribution over data. Error is 1−A.

This is estimated using a test dataset 〈x̄1, ¯̀
1〉, . . . 〈x̄m, ¯̀

m〉:

Â(classify) =
1

m

m∑
i=1

1
{

classify(x̄i) = ¯̀
i

}
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Issues with Test-Set Accuracy

I Class imbalance: if p(L = not spam) = 0.99, then you can get Â ≈ 0.99 by
always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.
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Evaluation in the Two-Class Case
Suppose we have two classes, and one of them, t ∈ L is a “target.”

I E.g., given a query, find relevant documents.

Precision and recall encode the goals of returning a “pure” set of targeted instances
and capturing all of them.

actually in 
the target 

class;
L = t

believed to be 
in the target 

class;
classify(x) = t

correctly 
labeled 

as t

A BC

P̂(classify) =
|C|
|B|

=
|A ∩B|
|B|

R̂(classify) =
|C|
|A|

=
|A ∩B|
|A|

F̂1(classify) = 2 · P̂ · R̂
P̂ + R̂
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Another View: Contingency Table

L = t L 6= t

classify(X) = t C (true positives) B \ C (false positives) B

classify(X) 6= t A \ C (false negatives) (true negatives)

A
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Evaluation with > 2 Classes

Macroaveraged precision and recall: let each class be the target and report the average
P̂ and R̂ across all classes.

Microaveraged precision and recall: pool all one-vs.-rest decisions into a single
contingency table, calculate P̂ and R̂ from that.
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Cross-Validation

Remember that Â, P̂, R̂, and F̂1 are all estimates of the classifier’s quality under the
true data distribution.

I Estimates are noisy!

K-fold cross-validation:

I Partition the training set into K non-overlapping “folds” x1, . . . ,xK .
I For i ∈ {1, . . . ,K}:

I Train on x1:n \ xi, using xi as development data.
I Estimate quality on the ith development set: Âi

I Report the average:

Â =
1

K

K∑
i=1

Âi

and perhaps also the standard error.
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Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

13 / 66



Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
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15 / 66



Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
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Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

Frequentist view: how (im)probable is the observed difference, given H0 = true?

Caution: statistical significance is neither necessary nor sufficient for research
significance or practical usefulness!
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A Hypothesis Test for Text Classifiers
McNemar (1947)

1. The null hypothesis: A1 = A2

2. Pick significance level α, an “acceptably” high probability of incorrectly rejecting
H0.

3. Calculate the test statistic, k (explained in the next slide).

4. Calculate the probability of a more extreme value of k, assuming H0 is true; this
is the p-value.

5. Reject the null hypothesis if the p-value is less than α.

The p-value is p(this observation | H0 is true), not the other way around!

18 / 66



McNemar’s Test: Details
Assumptions: independent (test) samples and binary measurements. Count test set
error patterns:

classify1 is incorrect classify1 is correct

classify2 is incorrect c00 c10

classify2 is correct c01 c11 m · Â2

m · Â1

If A1 = A2, then c01 and c10 are each distributed according to Binomial(c01 + c10,
1
2).

test statistic k = min{c01, c10}

p-value =
1

2c01+c10−1

k∑
j=0

(
c01 + c10

j

)
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Other Tests

Different tests make different assumptions.

Sometimes we calculate an interval that would be “unsurprising” under H0 and test
whether a test statistic falls in that interval (e.g., t-test and Wald test).

In many cases, there is no closed form for estimating p-values, so we use random
approximations (e.g., permutation test and paired bootstrap test).

If you do lots of tests, you need to correct for that!

Read lots more in Smith (2011), appendix B.
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Features in Text Classification

Running example: x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature r.v.s.

For j ∈ {1, . . . , d}, let Fj be a discrete random variable taking a value in Fj .

I Often, these are term (word and perhaps n-gram) frequencies.
E.g., fhamburgers(x) = 1, fthe(x) = 2, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Can also be word “presence” features.
E.g., fhamburgers(x) = 1, fthe(x) = 1, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : cxi(v) > 0|

I Disjunctions of terms
I Clusters
I Task-specific lexicons
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Probabilistic Classification

Classification rule:

classify(f) = argmax
`∈L

p(` | f)

= argmax
`∈L

p(`,f)

p(f)

= argmax
`∈L

p(`,f)
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Näıve Bayes Classifier

p(L = `, Fj = f1, . . . , Fd = fd) = p(`)

d∏
j=1

p(Fj = fj | `)

= π`

d∏
j=1

θfj |j,`

Parameters:
I π ∈ 4|L|, the “class prior”
I For each feature function j and label `, a distribution over values θ∗|j,` ∈ 4|Fj |

The “bag of words” version of näıve Bayes:

Fj = Xj

p(`,x) = π`

|x|∏
j=1

θxj |`
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Probabilistic Graphical Model for Näıve Bayes

X1

!

L

π

X2 X"…

general form bag of words

F1

L

π

F2 Fd…

!1 !2 !d
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Näıve Bayes: Remarks

I Estimation by (smoothed) relative frequency estimation: easy!

I For continuous or integer-valued features, use different distributions.

I The bag of words version equates to building a conditional language model for
each label.

I The Collins reading assumes a binary version, with Fv indicating whether v ∈ V
occurs in x.
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Generative vs. Discriminative Classification

Näıve Bayes is the prototypical generative classifier.

I It describes a probabilistic process—“generative story”—for X and L.

I But why model X? It’s always observed?

Discriminative models instead:

I seek to optimize a performance measure, like accuracy, or a computationally
convenient surrogate;

I do not worry about p(X);

I tend to perform better when you have reasonable amounts of data.

33 / 66



Discriminative Text Classifiers

I Multinomial logistic regression (also known as “max ent” and “log-linear model”)

I Support vector machines

I Neural networks

I Decision trees

I’ll briefly touch on three ways to train a classifier with a linear decision rule.
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Linear Models for Classification

“Linear” decision rule:

ˆ̀= argmax
`∈L

w · φ(x, `)

where φ : V† × L → Rd.

Parameters: w ∈ Rd
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Linear Models for Classification

“Linear” decision rule:

ˆ̀= argmax
`∈L

w · φ(x, `)

where φ : V† × L → Rd.

Parameters: w ∈ Rd

Some notational variants define:

I w` for each ` ∈ L
I φ : V† → Rd (similar to what we had for näıve Bayes)
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Multinomial Logistic Regression as “Log Loss”

When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)
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When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)

MLE can be rewritten as a minimization problem:

ŵ = argmin
w

n∑
i=1

log
∑
`′∈L

exp w · φ(xi, `
′)︸ ︷︷ ︸

fear

−w · φ(xi, `i)︸ ︷︷ ︸
hope
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fear
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Recall from log-linear language models:

I Be wise and regularize!

I Solve with batch or stochastic gradient methods.

I wj has an interpretation.
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Log Loss for (x, `)
Another view is to minimize the negated log-likelihood, which is known as “log loss”:(

log
∑
`′∈L

exp w · φ(x, `′)

)
−w · φ(x, `)

In the binary case, where “score” is the score of the correct label:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In blue is the log loss; in red is the “zero-one” loss (error).
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“Log Sum Exp”

Consider the “log
∑

exp” part of the objective function, with two labels, one whose
score is fixed.

−10 −5 0 5 10

−
10

−
5

0
5

10
15

log(ex + e8), log(ex + e0), log(ex + e−8)
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Hard Maximum

Why not use a hard max instead?

−10 −5 0 5 10

−
10

−
5

0
5

10
15

max(x, 8), max(x, 0), max(x,−8)
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Hinge Loss for (x, `)

(
max
`′∈L

w · φ(x, `′)

)
−w · φ(x, `)

In the binary case:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In purple is the hinge loss, in blue is the log loss; in red is the “zero-one” loss (error).
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Minimizing Hinge Loss: Perceptron

fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)
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Minimizing Hinge Loss: Perceptron

fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)

When two labels are tied, the function is not differentiable.
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fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)

When two labels are tied, the function is not differentiable.

But it’s still sub-differentiable. Solution: (stochastic) subgradient descent!

Perceptron algorithm:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

t ← argmax`∈L w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀)− φ(xit , `it)
)
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Text Classification

Input: a piece of text x ∈ V†, usually a document (r.v. X) Output: a label from a
finite set L (r.v. L)

Standard line of attack:

1. Human experts label some data.

2. Feed the data to a supervised machine learning algorithm that constructs an
automatic classifier classify : V† → L

3. Apply classify to as much data as you want!

Note: we assume the texts are segmented already, even the new ones.
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Multinomial Logistic Regression as “Log Loss”
When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)

MLE can be rewritten as a minimization problem:

ŵ = argmin
w

n∑
i=1

log
∑
`′∈L

exp w · φ(xi, `
′)︸ ︷︷ ︸

fear

−w · φ(xi, `i)︸ ︷︷ ︸
hope

Recall from log-linear language models:

I Be wise and regularize!

I Solve with batch or stochastic gradient methods.

I wj has an interpretation.
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Log Loss and Hinge Loss for (x, `)

log loss:

(
log
∑
`′∈L

exp w · φ(x, `′)

)
−w · φ(x, `)

hinge loss:

(
max
`′∈L

w · φ(x, `′)

)
−w · φ(x, `)

In the binary case, where “score” is the linear score of the correct label:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In purple is the hinge loss, in blue is the log loss; in red is the “zero-one” loss (error).
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Minimizing Hinge Loss: Perceptron

min
w

n∑
i=1

(
max
`′∈L

w · φ(xi, `
′)

)
−w · φ(xi, `i)

Stochastic subgradient descent on the above is called the perceptron algorithm.

I For t ∈ {1, . . . , T}:
I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

it ← argmax`∈L w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀
it)− φ(xit , `it)

)
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

Let cost(`, `′) quantify the “badness” of substituting `′ for correct label `.

Intuition: estimate the scoring function so that

score(`i)− score(ˆ̀) ∝ cost(`i, ˆ̀)
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General Hinge Loss for (x, `)

(
max
`′∈L

w · φ(x, `′) + cost(`, `′)

)
−w · φ(x, `)

In the binary case, with cost(−1, 1) = 1:

−4 −2 0 2 4

0
1

2
3

4
5

6

x

fu
nc

tio
n(

x)
 −

x 
+

 p
m

ax
(x

, 1
)

In blue is the general hinge loss; in red is the “zero-one” loss (error).
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Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where only a small number of αi,` are nonzero.
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Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where only a small number of αi,` are nonzero.

Those φ(xi, `) are called “support vectors” because they “support” the decision
boundary.

ŵ · φ(x, `′) =
∑

(i,`)∈S

αi,` · φ(xi, `) · φ(x, `′)

See Crammer and Singer (2001) for the multiclass version.
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Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where only a small number of αi,` are nonzero.

Those φ(xi, `) are called “support vectors” because they “support” the decision
boundary.

ŵ · φ(x, `′) =
∑

(i,`)∈S

αi,` · φ(xi, `) · φ(x, `′)

See Crammer and Singer (2001) for the multiclass version.

Really good tool: SVMlight, http://svmlight.joachims.org
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Support Vector Machines: Remarks

I Regularization is critical; squared `2 is most common, and often used in (yet
another) motivation around the idea of “maximizing margin” around the
hyperplane separator.

I Often, instead of linear models that explicitly calculate w · φ, these methods are
“kernelized” and rearrange all calculations to involve inner-products between φ
vectors.

I Example:

Klinear(v,w) = v ·w
Kpolynomial(v,w) = (v ·w + 1)

p

KGaussian(v,w) = exp−‖v −w‖22
2σ2

I Linear kernels are most common in NLP.
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General Remarks

I Text classification: many problems, all solved with supervised learners.
I Lexicon features can provide problem-specific guidance.

I Näıve Bayes, log-linear, and SVM are all linear methods that tend to work
reasonably well, with good features and smoothing/regularization.

I You should have a basic understanding of the tradeoffs in choosing among them.

I Random forests are widely used in industry when performance matters more than
interpretability.

I Lots of papers about neural networks, but with hyperparameter tuning applied
fairly to linear models, the advantage is not clear (Yogatama et al., 2015).
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