
Natural Language Processing (CSE 517):
Text Classification

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 20, 2018

1 / 66

Text Classification

Input: a piece of text x ∈ V†, usually a document (r.v. X) Output: a label from a
finite set L (r.v. L)

Standard line of attack:

1. Human experts label some data.

2. Feed the data to a supervised machine learning algorithm that constructs an
automatic classifier classify : V† → L

3. Apply classify to as much data as you want!

Note: we assume the texts are segmented already, even the new ones.

2 / 66

Text Classification: Examples

I Library-like subjects (e.g., the Dewey decimal system)

I News stories: politics vs. sports vs. business vs. technology ...

I Reviews of films, restaurants, products: postive vs. negative

I Author attributes: identity, political stance, gender, age, ...

I Email, arXiv submissions, etc.: spam vs. not

I What is the reading level of a piece of text?

I How influential will a scientific paper be?

I Will a piece of proposed legislation pass?

Closely related: relevance to a query.

3 / 66

Evaluation

Accuracy:

A(classify) = p(classify(X) = L)

=
∑

x∈V†,`∈L

p(X = x, L = `) ·
{

1 if classify(x) = `
0 otherwise

=
∑

x∈V†,`∈L

p(X = x, L = `) · 1 {classify(x) = `}

where p is the true distribution over data. Error is 1−A.

This is estimated using a test dataset 〈x̄1, ¯̀
1〉, . . . 〈x̄m, ¯̀

m〉:

Â(classify) =
1

m

m∑
i=1

1
{

classify(x̄i) = ¯̀
i

}

4 / 66

Issues with Test-Set Accuracy

I Class imbalance: if p(L = not spam) = 0.99, then you can get Â ≈ 0.99 by
always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

5 / 66

Issues with Test-Set Accuracy

I Class imbalance: if p(L = not spam) = 0.99, then you can get Â ≈ 0.99 by
always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

6 / 66

Issues with Test-Set Accuracy

I Class imbalance: if p(L = not spam) = 0.99, then you can get Â ≈ 0.99 by
always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

7 / 66

Issues with Test-Set Accuracy

I Class imbalance: if p(L = not spam) = 0.99, then you can get Â ≈ 0.99 by
always guessing “not spam.”

I Relative importance of classes or cost of error types.

I Variance due to the test data.

8 / 66

Evaluation in the Two-Class Case
Suppose we have two classes, and one of them, t ∈ L is a “target.”

I E.g., given a query, find relevant documents.

Precision and recall encode the goals of returning a “pure” set of targeted instances
and capturing all of them.

actually in
the target

class;
L = t

believed to be
in the target

class;
classify(x) = t

correctly
labeled

as t

A BC

P̂(classify) =
|C|
|B|

=
|A ∩B|
|B|

R̂(classify) =
|C|
|A|

=
|A ∩B|
|A|

F̂1(classify) = 2 · P̂ · R̂
P̂ + R̂

9 / 66

Another View: Contingency Table

L = t L 6= t

classify(X) = t C (true positives) B \ C (false positives) B

classify(X) 6= t A \ C (false negatives) (true negatives)

A

10 / 66

Evaluation with > 2 Classes

Macroaveraged precision and recall: let each class be the target and report the average
P̂ and R̂ across all classes.

Microaveraged precision and recall: pool all one-vs.-rest decisions into a single
contingency table, calculate P̂ and R̂ from that.

11 / 66

Cross-Validation

Remember that Â, P̂, R̂, and F̂1 are all estimates of the classifier’s quality under the
true data distribution.

I Estimates are noisy!

K-fold cross-validation:

I Partition the training set into K non-overlapping “folds” x1, . . . ,xK .
I For i ∈ {1, . . . ,K}:

I Train on x1:n \ xi, using xi as development data.
I Estimate quality on the ith development set: Âi

I Report the average:

Â =
1

K

K∑
i=1

Âi

and perhaps also the standard error.

12 / 66

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

13 / 66

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
Â1 � Â2, we are tempted to believe otherwise.

14 / 66

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

15 / 66

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

Frequentist view: how (im)probable is the observed difference, given H0 = true?

16 / 66

Statistical Significance

Suppose we have two classifiers, classify1 and classify2.

Is classify1 better? The “null hypothesis,” denoted H0, is that it isn’t. But if
Â1 � Â2, we are tempted to believe otherwise.

How much larger must Â1 be than Â2 to reject H0?

Frequentist view: how (im)probable is the observed difference, given H0 = true?

Caution: statistical significance is neither necessary nor sufficient for research
significance or practical usefulness!

17 / 66

A Hypothesis Test for Text Classifiers
McNemar (1947)

1. The null hypothesis: A1 = A2

2. Pick significance level α, an “acceptably” high probability of incorrectly rejecting
H0.

3. Calculate the test statistic, k (explained in the next slide).

4. Calculate the probability of a more extreme value of k, assuming H0 is true; this
is the p-value.

5. Reject the null hypothesis if the p-value is less than α.

The p-value is p(this observation | H0 is true), not the other way around!

18 / 66

McNemar’s Test: Details
Assumptions: independent (test) samples and binary measurements. Count test set
error patterns:

classify1 is incorrect classify1 is correct

classify2 is incorrect c00 c10

classify2 is correct c01 c11 m · Â2

m · Â1

If A1 = A2, then c01 and c10 are each distributed according to Binomial(c01 + c10,
1
2).

test statistic k = min{c01, c10}

p-value =
1

2c01+c10−1

k∑
j=0

(
c01 + c10

j

)
19 / 66

Other Tests

Different tests make different assumptions.

Sometimes we calculate an interval that would be “unsurprising” under H0 and test
whether a test statistic falls in that interval (e.g., t-test and Wald test).

In many cases, there is no closed form for estimating p-values, so we use random
approximations (e.g., permutation test and paired bootstrap test).

If you do lots of tests, you need to correct for that!

Read lots more in Smith (2011), appendix B.

20 / 66

Features in Text Classification

Running example: x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature r.v.s.

For j ∈ {1, . . . , d}, let Fj be a discrete random variable taking a value in Fj .

I Often, these are term (word and perhaps n-gram) frequencies.
E.g., fhamburgers(x) = 1, fthe(x) = 2, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Can also be word “presence” features.
E.g., fhamburgers(x) = 1, fthe(x) = 1, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : cxi(v) > 0|

I Disjunctions of terms
I Clusters
I Task-specific lexicons

21 / 66

Features in Text Classification

Running example: x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature r.v.s.

For j ∈ {1, . . . , d}, let Fj be a discrete random variable taking a value in Fj .

I Often, these are term (word and perhaps n-gram) frequencies.
E.g., fhamburgers(x) = 1, fthe(x) = 2, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Can also be word “presence” features.
E.g., fhamburgers(x) = 1, fthe(x) = 1, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : cxi(v) > 0|

I Disjunctions of terms
I Clusters
I Task-specific lexicons

22 / 66

Features in Text Classification

Running example: x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature r.v.s.

For j ∈ {1, . . . , d}, let Fj be a discrete random variable taking a value in Fj .

I Often, these are term (word and perhaps n-gram) frequencies.
E.g., fhamburgers(x) = 1, fthe(x) = 2, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Can also be word “presence” features.
E.g., fhamburgers(x) = 1, fthe(x) = 1, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : cxi(v) > 0|

I Disjunctions of terms
I Clusters
I Task-specific lexicons

23 / 66

Features in Text Classification

Running example: x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature r.v.s.

For j ∈ {1, . . . , d}, let Fj be a discrete random variable taking a value in Fj .

I Often, these are term (word and perhaps n-gram) frequencies.
E.g., fhamburgers(x) = 1, fthe(x) = 2, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Can also be word “presence” features.
E.g., fhamburgers(x) = 1, fthe(x) = 1, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : cxi(v) > 0|

I Disjunctions of terms
I Clusters
I Task-specific lexicons

24 / 66

Features in Text Classification

Running example: x =“The vodka was great, but don’t touch the hamburgers.”

A different representation of the text sequence r.v. X: feature r.v.s.

For j ∈ {1, . . . , d}, let Fj be a discrete random variable taking a value in Fj .

I Often, these are term (word and perhaps n-gram) frequencies.
E.g., fhamburgers(x) = 1, fthe(x) = 2, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Can also be word “presence” features.
E.g., fhamburgers(x) = 1, fthe(x) = 1, fdelicious(x) = 0, fdon’t touch(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

∀v ∈ V, idf(v) = log
n

|i : cxi(v) > 0|

I Disjunctions of terms
I Clusters
I Task-specific lexicons

25 / 66

Probabilistic Classification

Classification rule:

classify(f) = argmax
`∈L

p(` | f)

= argmax
`∈L

p(`,f)

p(f)

= argmax
`∈L

p(`,f)

26 / 66

Näıve Bayes Classifier

p(L = `, Fj = f1, . . . , Fd = fd) = p(`)

d∏
j=1

p(Fj = fj | `)

= π`

d∏
j=1

θfj |j,`

Parameters:
I π ∈ 4|L|, the “class prior”
I For each feature function j and label `, a distribution over values θ∗|j,` ∈ 4|Fj |

The “bag of words” version of näıve Bayes:

Fj = Xj

p(`,x) = π`

|x|∏
j=1

θxj |`

27 / 66

Probabilistic Graphical Model for Näıve Bayes

X1

!

L

π

X2 X"…

general form bag of words

F1

L

π

F2 Fd…

!1 !2 !d

28 / 66

Näıve Bayes: Remarks

I Estimation by (smoothed) relative frequency estimation: easy!

I For continuous or integer-valued features, use different distributions.

I The bag of words version equates to building a conditional language model for
each label.

I The Collins reading assumes a binary version, with Fv indicating whether v ∈ V
occurs in x.

29 / 66

Näıve Bayes: Remarks

I Estimation by (smoothed) relative frequency estimation: easy!

I For continuous or integer-valued features, use different distributions.

I The bag of words version equates to building a conditional language model for
each label.

I The Collins reading assumes a binary version, with Fv indicating whether v ∈ V
occurs in x.

30 / 66

Näıve Bayes: Remarks

I Estimation by (smoothed) relative frequency estimation: easy!

I For continuous or integer-valued features, use different distributions.

I The bag of words version equates to building a conditional language model for
each label.

I The Collins reading assumes a binary version, with Fv indicating whether v ∈ V
occurs in x.

31 / 66

Näıve Bayes: Remarks

I Estimation by (smoothed) relative frequency estimation: easy!

I For continuous or integer-valued features, use different distributions.

I The bag of words version equates to building a conditional language model for
each label.

I The Collins reading assumes a binary version, with Fv indicating whether v ∈ V
occurs in x.

32 / 66

Generative vs. Discriminative Classification

Näıve Bayes is the prototypical generative classifier.

I It describes a probabilistic process—“generative story”—for X and L.

I But why model X? It’s always observed?

Discriminative models instead:

I seek to optimize a performance measure, like accuracy, or a computationally
convenient surrogate;

I do not worry about p(X);

I tend to perform better when you have reasonable amounts of data.

33 / 66

Discriminative Text Classifiers

I Multinomial logistic regression (also known as “max ent” and “log-linear model”)

I Support vector machines

I Neural networks

I Decision trees

I’ll briefly touch on three ways to train a classifier with a linear decision rule.

34 / 66

Linear Models for Classification

“Linear” decision rule:

ˆ̀= argmax
`∈L

w · φ(x, `)

where φ : V† × L → Rd.

Parameters: w ∈ Rd

35 / 66

Linear Models for Classification

“Linear” decision rule:

ˆ̀= argmax
`∈L

w · φ(x, `)

where φ : V† × L → Rd.

Parameters: w ∈ Rd

Some notational variants define:

I w` for each ` ∈ L
I φ : V† → Rd (similar to what we had for näıve Bayes)

36 / 66

Multinomial Logistic Regression as “Log Loss”

When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)

37 / 66

Multinomial Logistic Regression as “Log Loss”

When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)

MLE can be rewritten as a minimization problem:

ŵ = argmin
w

n∑
i=1

log
∑
`′∈L

exp w · φ(xi, `
′)︸ ︷︷ ︸

fear

−w · φ(xi, `i)︸ ︷︷ ︸
hope

38 / 66

Multinomial Logistic Regression as “Log Loss”
When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)

MLE can be rewritten as a minimization problem:

ŵ = argmin
w

n∑
i=1

log
∑
`′∈L

exp w · φ(xi, `
′)︸ ︷︷ ︸

fear

−w · φ(xi, `i)︸ ︷︷ ︸
hope

Recall from log-linear language models:

I Be wise and regularize!

I Solve with batch or stochastic gradient methods.

I wj has an interpretation.

39 / 66

Log Loss for (x, `)
Another view is to minimize the negated log-likelihood, which is known as “log loss”:(

log
∑
`′∈L

exp w · φ(x, `′)

)
−w · φ(x, `)

In the binary case, where “score” is the score of the correct label:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In blue is the log loss; in red is the “zero-one” loss (error).
40 / 66

“Log Sum Exp”

Consider the “log
∑

exp” part of the objective function, with two labels, one whose
score is fixed.

−10 −5 0 5 10

−
10

−
5

0
5

10
15

log(ex + e8), log(ex + e0), log(ex + e−8)

41 / 66

Hard Maximum

Why not use a hard max instead?

−10 −5 0 5 10

−
10

−
5

0
5

10
15

max(x, 8), max(x, 0), max(x,−8)

42 / 66

Hinge Loss for (x, `)

(
max
`′∈L

w · φ(x, `′)

)
−w · φ(x, `)

In the binary case:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In purple is the hinge loss, in blue is the log loss; in red is the “zero-one” loss (error).
43 / 66

Minimizing Hinge Loss: Perceptron

fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)

44 / 66

Minimizing Hinge Loss: Perceptron

fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)

When two labels are tied, the function is not differentiable.

45 / 66

Minimizing Hinge Loss: Perceptron

fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)

When two labels are tied, the function is not differentiable.

But it’s still sub-differentiable. Solution: (stochastic) subgradient descent!

46 / 66

Minimizing Hinge Loss: Perceptron

fear︷ ︸︸ ︷(
max
`′∈L

w · φ(x, `′)

)
−

hope︷ ︸︸ ︷
w · φ(x, `)

When two labels are tied, the function is not differentiable.

But it’s still sub-differentiable. Solution: (stochastic) subgradient descent!

Perceptron algorithm:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

t ← argmax`∈L w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀)− φ(xit , `it)
)

47 / 66

Natural Language Processing (CSE 517):
Text Classification

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 25, 2018

48 / 66

Text Classification

Input: a piece of text x ∈ V†, usually a document (r.v. X) Output: a label from a
finite set L (r.v. L)

Standard line of attack:

1. Human experts label some data.

2. Feed the data to a supervised machine learning algorithm that constructs an
automatic classifier classify : V† → L

3. Apply classify to as much data as you want!

Note: we assume the texts are segmented already, even the new ones.

49 / 66

Multinomial Logistic Regression as “Log Loss”
When we discussed log-linear language models, we transformed the score into a
probability distribution. Here, that would be:

p(L = ` | x) =
exp w · φ(x, `)∑

`′∈L exp w · φ(x, `′)

MLE can be rewritten as a minimization problem:

ŵ = argmin
w

n∑
i=1

log
∑
`′∈L

exp w · φ(xi, `
′)︸ ︷︷ ︸

fear

−w · φ(xi, `i)︸ ︷︷ ︸
hope

Recall from log-linear language models:

I Be wise and regularize!

I Solve with batch or stochastic gradient methods.

I wj has an interpretation.

50 / 66

Log Loss and Hinge Loss for (x, `)

log loss:

(
log
∑
`′∈L

exp w · φ(x, `′)

)
−w · φ(x, `)

hinge loss:

(
max
`′∈L

w · φ(x, `′)

)
−w · φ(x, `)

In the binary case, where “score” is the linear score of the correct label:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In purple is the hinge loss, in blue is the log loss; in red is the “zero-one” loss (error).
51 / 66

Minimizing Hinge Loss: Perceptron

min
w

n∑
i=1

(
max
`′∈L

w · φ(xi, `
′)

)
−w · φ(xi, `i)

Stochastic subgradient descent on the above is called the perceptron algorithm.

I For t ∈ {1, . . . , T}:
I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

it ← argmax`∈L w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀
it)− φ(xit , `it)

)

52 / 66

Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

53 / 66

Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

Let cost(`, `′) quantify the “badness” of substituting `′ for correct label `.

54 / 66

Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

Let cost(`, `′) quantify the “badness” of substituting `′ for correct label `.

Intuition: estimate the scoring function so that

score(`i)− score(ˆ̀) ∝ cost(`i, ˆ̀)

55 / 66

General Hinge Loss for (x, `)

(
max
`′∈L

w · φ(x, `′) + cost(`, `′)

)
−w · φ(x, `)

In the binary case, with cost(−1, 1) = 1:

−4 −2 0 2 4

0
1

2
3

4
5

6

x

fu
nc

tio
n(

x)
 −

x
+

 p
m

ax
(x

, 1
)

In blue is the general hinge loss; in red is the “zero-one” loss (error).

56 / 66

Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where only a small number of αi,` are nonzero.

57 / 66

Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where only a small number of αi,` are nonzero.

Those φ(xi, `) are called “support vectors” because they “support” the decision
boundary.

ŵ · φ(x, `′) =
∑

(i,`)∈S

αi,` · φ(xi, `) · φ(x, `′)

See Crammer and Singer (2001) for the multiclass version.

58 / 66

Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where only a small number of αi,` are nonzero.

Those φ(xi, `) are called “support vectors” because they “support” the decision
boundary.

ŵ · φ(x, `′) =
∑

(i,`)∈S

αi,` · φ(xi, `) · φ(x, `′)

See Crammer and Singer (2001) for the multiclass version.

Really good tool: SVMlight, http://svmlight.joachims.org

59 / 66

http://svmlight.joachims.org

Support Vector Machines: Remarks

I Regularization is critical; squared `2 is most common, and often used in (yet
another) motivation around the idea of “maximizing margin” around the
hyperplane separator.

I Often, instead of linear models that explicitly calculate w · φ, these methods are
“kernelized” and rearrange all calculations to involve inner-products between φ
vectors.

I Example:

Klinear(v,w) = v ·w
Kpolynomial(v,w) = (v ·w + 1)

p

KGaussian(v,w) = exp−‖v −w‖22
2σ2

I Linear kernels are most common in NLP.

60 / 66

Support Vector Machines: Remarks

I Regularization is critical; squared `2 is most common, and often used in (yet
another) motivation around the idea of “maximizing margin” around the
hyperplane separator.

I Often, instead of linear models that explicitly calculate w · φ, these methods are
“kernelized” and rearrange all calculations to involve inner-products between φ
vectors.

I Example:

Klinear(v,w) = v ·w
Kpolynomial(v,w) = (v ·w + 1)

p

KGaussian(v,w) = exp−‖v −w‖22
2σ2

I Linear kernels are most common in NLP.

61 / 66

General Remarks

I Text classification: many problems, all solved with supervised learners.
I Lexicon features can provide problem-specific guidance.

I Näıve Bayes, log-linear, and SVM are all linear methods that tend to work
reasonably well, with good features and smoothing/regularization.

I You should have a basic understanding of the tradeoffs in choosing among them.

I Random forests are widely used in industry when performance matters more than
interpretability.

I Lots of papers about neural networks, but with hyperparameter tuning applied
fairly to linear models, the advantage is not clear (Yogatama et al., 2015).

62 / 66

General Remarks

I Text classification: many problems, all solved with supervised learners.
I Lexicon features can provide problem-specific guidance.

I Näıve Bayes, log-linear, and SVM are all linear methods that tend to work
reasonably well, with good features and smoothing/regularization.

I You should have a basic understanding of the tradeoffs in choosing among them.

I Random forests are widely used in industry when performance matters more than
interpretability.

I Lots of papers about neural networks, but with hyperparameter tuning applied
fairly to linear models, the advantage is not clear (Yogatama et al., 2015).

63 / 66

General Remarks

I Text classification: many problems, all solved with supervised learners.
I Lexicon features can provide problem-specific guidance.

I Näıve Bayes, log-linear, and SVM are all linear methods that tend to work
reasonably well, with good features and smoothing/regularization.

I You should have a basic understanding of the tradeoffs in choosing among them.

I Random forests are widely used in industry when performance matters more than
interpretability.

I Lots of papers about neural networks, but with hyperparameter tuning applied
fairly to linear models, the advantage is not clear (Yogatama et al., 2015).

64 / 66

General Remarks

I Text classification: many problems, all solved with supervised learners.
I Lexicon features can provide problem-specific guidance.

I Näıve Bayes, log-linear, and SVM are all linear methods that tend to work
reasonably well, with good features and smoothing/regularization.

I You should have a basic understanding of the tradeoffs in choosing among them.

I Random forests are widely used in industry when performance matters more than
interpretability.

I Lots of papers about neural networks, but with hyperparameter tuning applied
fairly to linear models, the advantage is not clear (Yogatama et al., 2015).

65 / 66

References I

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2(5):265–292, 2001.

Quinn McNemar. Note on the sampling error of the difference between correlated proportions or percentages.
Psychometrika, 12(2):153–157, 1947.

Noah A. Smith. Linguistic Structure Prediction. Synthesis Lectures on Human Language Technologies. Morgan
and Claypool, 2011. URL
http://www.morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf.

Dani Yogatama, Lingpeng Kong, and Noah A. Smith. Bayesian optimization of text representations. In Proc. of
EMNLP, 2015. URL http://www.aclweb.org/anthology/D/D15/D15-1251.pdf.

66 / 66

http://www.morganclaypool.com/doi/pdf/10.2200/S00361ED1V01Y201105HLT013.pdf
http://www.aclweb.org/anthology/D/D15/D15-1251.pdf

