
Natural Language Processing (CSE 517):
Featurized and Neural Language Models

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 6, 2018

1 / 35

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).
I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

Today: more details on log-linear language models, then neural language models

2 / 35

Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj |X1:j−1 = x1:j−1)

=
∏̀
j=1

expw · φ(x1:j−1, xj)

Zw(x1:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)
Zw(hj)

3 / 35

How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)
Zw(hj)

Parameters: θv|h wk
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE:
c(hv)

c(h)
no closed form

4 / 35

MLE for w

max
w∈Rd

F (w)︷ ︸︸ ︷
N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

5 / 35

MLE for w

max
w∈Rd

F (w)︷ ︸︸ ︷
N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Hope/fear view: for each instance i,

I increase the score of the correct output xi, score(xi) = w · φ(hi, xi)
I decrease the “softened max” score overall, log

∑
v∈V exp score(v)

6 / 35

MLE for w

max
w∈Rd

F (w)︷ ︸︸ ︷
N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Gradient view:

∇wfi = φ(hi, xi)︸ ︷︷ ︸
observed features

−
∑
v∈V

pw(v | hi) · φ(hi, v)︸ ︷︷ ︸
expected features

∇wF =

N∑
i=1

(
φ(hi, xi)−

∑
v∈V

pw(v | hi) · φ(hi, v)

)
Setting this to zero means getting model’s expectations to match empirical
expectations.

7 / 35

MLE for w: Algorithms

I Batch methods (L-BFGS is popular)

I Stochastic gradient descent more common today, especially with special tricks for
adapting the step size over time

I Many specialized methods (e.g., “iterative scaling”)

8 / 35

Stochastic Gradient Descent

Goal: minimize
∑N

i=1 fi(w) with respect to w.

Input: initial value w, number of epochs T , learning rate α

For t ∈ {1, . . . , T}:
I Choose a random permutation π of {1, . . . , N}.
I For i ∈ {1, . . . , N}:

w← w − α · ∇wfπ(i)

Output: w

9 / 35

Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.

10 / 35

Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.

Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.

11 / 35

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑
j=1

|wj |

I This results in sparsity (i.e., many wj = 0).

I Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature
selection.

I Do not confuse it with data sparseness (a problem to be overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and

stochastic (e.g., Langford et al., 2009) settings.

12 / 35

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑
j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature

selection.

I Do not confuse it with data sparseness (a problem to be overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and

stochastic (e.g., Langford et al., 2009) settings.

13 / 35

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑
j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature

selection.
I Do not confuse it with data sparseness (a problem to be overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and

stochastic (e.g., Langford et al., 2009) settings.

14 / 35

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑
j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature

selection.
I Do not confuse it with data sparseness (a problem to be overcome)!

I This is not differentiable at wj = 0.

I Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and
stochastic (e.g., Langford et al., 2009) settings.

15 / 35

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑
j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature

selection.
I Do not confuse it with data sparseness (a problem to be overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and

stochastic (e.g., Langford et al., 2009) settings.
16 / 35

MLE for w

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form; you must use a numerical optimization algorithm like
stochastic gradient descent.

I Log-linear models are powerful but expensive (Zw(hi)).
I Regularization is very important; we don’t actually do MLE.

I Just like for n-gram models! Only even more so, since log-linear models are even
more expressive.

17 / 35

Maximum Entropy

Consider a distribution p over events in X . The Shannon entropy (in bits) of p is
defined as:

H(p) = −
∑
x∈X

p(X = x)

{
0 if p(X = x) = 0
log2 p(X = x) otherwise

This is a measure of “randomness”; entropy is zero when p is deterministic and log |X |
when p is uniform.

Maximum entropy principle: among distributions that fit the data, pick the one with
the greatest entropy.

18 / 35

Maximum Entropy

If “fit the data” is taken to mean

∀k ∈ {1, . . . , d},Ep[φk] = Ẽ[φk]

then the MLE of the log-linear family with features φ is the maximum entropy solution.

This is why log-linear models are sometimes called “maxent” models (e.g., Berger
et al., 1996)

19 / 35

“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a single log-linear
model over event space V†:

pw(x) =
expw · φ(x)

Zw

I Any feature of the sentence could be included in this model!

I Zw is deceptively simple-looking!

Zw =
∑
x∈V†

expw · φ(x)

20 / 35

Quick Recap

Two kinds of language models so far:

representation? estimation? think about?

n-gram hi is (n− 1) previous symbols count and normalize smoothing

log-linear featurized representation of 〈hi, xi〉 iterative gradient descent features

21 / 35

Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:
I A function family that maps parameter values to functions of the form
n : Rdin → Rdout ; typically:

I Non-linear
I Differentiable with respect to its inputs
I “Assembled” through a series of affine transformations and non-linearities, composed

together
I Symbolic/discrete inputs handled through lookups.

I Parameter values ν
I Typically a collection of scalars, vectors, and matrices
I We often assume they are linearized into RD

22 / 35

A Couple of Useful Functions
I softmax : Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
I tanh : R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k.
I Others include: ReLUs, logistic sigmoids, PReLUs, . . .

23 / 35

“One Hot” Vectors

Arbitrarily order the words in V, giving each an index in {1, . . . , V }.

Let ei ∈ RV contain all zeros, with the exception of a 1 in position i.

This is the “one hot” vector for the ith word in V.

24 / 35

Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj
V

>M
V × d

Aj
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hjM Tj
d×H


where each ehj ∈ RV is a one-hot vector and H is the number of “hidden units” in the
neural network (a “hyperparameter”).

Parameters ν include:

I M ∈ RV×d, which are called “embeddings” (row vectors), one for every word in V
I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V , W ∈ RV×H , u ∈ RH ,

T ∈ R(n−1)×d×H

25 / 35

Breaking It Down

Look up each of the history words hj , ∀j ∈ {1, . . . , n− 1} in M; keep two copies.

ehj
V

>M
V × d

ehj
V

>M
V × d

26 / 35

Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in M; keep two copies.
Rename the embedding for hj as mhj .

ehj
>M = mhj

ehj
>M = mhj

27 / 35

Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T)

mhj

u
H

+

n−1∑
j=1

mhj Tj
d×H

28 / 35

Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T) and a tanh nonlinearity.

mhj

tanh

 u +

n−1∑
j=1

mhj Tj



29 / 35

Breaking It Down

Apply an affine transformation to everything (b, A, W).

b
V

+

n−1∑
j=1

mhj Aj
d× V

+ W
V ×H

tanh

 u +

n−1∑
j=1

mhj Tj



30 / 35

Breaking It Down

Apply a softmax transformation to make the vector sum to one.

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +
n−1∑
j=1

mhj Tj



31 / 35

Breaking It Down

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +

n−1∑
j=1

mhj Tj


Like a log-linear language model with two kinds of features:

I Concatenation of context-word embeddings vectors mhj

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformation “inside” the
nonlinearity.

32 / 35

Visualization

M
u,
T

b, A

tanh

so
ftm
axW

33 / 35

Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
I V ≈ 18000 (after OOV processing)
I d ∈ {30, 60}
I H ∈ {50, 100}
I n− 1 = 5

So D = 461V + 30100 parameters, compared to O(V n) for classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a bit better, but was
slower to converge.

I If we averaged mhj instead of concatenating, we’d get to 221V + 6100 (this is a
variant of “continuous bag of words,” Mikolov et al., 2013).

34 / 35

References I

Galen Andrew and Jianfeng Gao. Scalable training of `1-regularized log-linear models. In Proc. of ICML, 2007.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model.
Journal of Machine Learning Research, 3(Feb):1137–1155, 2003. URL
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient. In NIPS, 2009.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. In Proceedings of ICLR, 2013. URL http://arxiv.org/pdf/1301.3781.pdf.

Roni Rosenfeld. Adaptive Statistical Language Modeling: A Maximum Entropy Approach. PhD thesis, Carnegie
Mellon University, 1994.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267–288, 1996.

35 / 35

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://arxiv.org/pdf/1301.3781.pdf

