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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).
I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

Today: more details on log-linear language models, then neural language models
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Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj |X1:j−1 = x1:j−1)

=
∏̀
j=1

expw · φ(x1:j−1, xj)

Zw(x1:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)
Zw(hj)

3 / 35



How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)
Zw(hj)

Parameters: θv|h wk
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE:
c(hv)

c(h)
no closed form
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MLE for w

max
w∈Rd

F (w)︷ ︸︸ ︷
N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)
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MLE for w

max
w∈Rd

F (w)︷ ︸︸ ︷
N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Hope/fear view: for each instance i,

I increase the score of the correct output xi, score(xi) = w · φ(hi, xi)
I decrease the “softened max” score overall, log

∑
v∈V exp score(v)
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MLE for w

max
w∈Rd

F (w)︷ ︸︸ ︷
N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Gradient view:

∇wfi = φ(hi, xi)︸ ︷︷ ︸
observed features

−
∑
v∈V

pw(v | hi) · φ(hi, v)︸ ︷︷ ︸
expected features

∇wF =

N∑
i=1

(
φ(hi, xi)−

∑
v∈V

pw(v | hi) · φ(hi, v)

)
Setting this to zero means getting model’s expectations to match empirical
expectations.
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MLE for w: Algorithms

I Batch methods (L-BFGS is popular)

I Stochastic gradient descent more common today, especially with special tricks for
adapting the step size over time

I Many specialized methods (e.g., “iterative scaling”)
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Stochastic Gradient Descent

Goal: minimize
∑N

i=1 fi(w) with respect to w.

Input: initial value w, number of epochs T , learning rate α

For t ∈ {1, . . . , T}:
I Choose a random permutation π of {1, . . . , N}.
I For i ∈ {1, . . . , N}:

w← w − α · ∇wfπ(i)

Output: w
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.

Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.
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`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑
j=1

|wj |

I This results in sparsity (i.e., many wj = 0).

I Many have argued that this is a good thing (Tibshirani, 1996); it’s a kind of feature
selection.

I Do not confuse it with data sparseness (a problem to be overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and Gao, 2007) and

stochastic (e.g., Langford et al., 2009) settings.
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MLE for w

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form; you must use a numerical optimization algorithm like
stochastic gradient descent.

I Log-linear models are powerful but expensive (Zw(hi)).
I Regularization is very important; we don’t actually do MLE.

I Just like for n-gram models! Only even more so, since log-linear models are even
more expressive.
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Maximum Entropy

Consider a distribution p over events in X . The Shannon entropy (in bits) of p is
defined as:

H(p) = −
∑
x∈X

p(X = x)

{
0 if p(X = x) = 0
log2 p(X = x) otherwise

This is a measure of “randomness”; entropy is zero when p is deterministic and log |X |
when p is uniform.

Maximum entropy principle: among distributions that fit the data, pick the one with
the greatest entropy.
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Maximum Entropy

If “fit the data” is taken to mean

∀k ∈ {1, . . . , d},Ep[φk] = Ẽ[φk]

then the MLE of the log-linear family with features φ is the maximum entropy solution.

This is why log-linear models are sometimes called “maxent” models (e.g., Berger
et al., 1996)
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“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a single log-linear
model over event space V†:

pw(x) =
expw · φ(x)

Zw

I Any feature of the sentence could be included in this model!

I Zw is deceptively simple-looking!

Zw =
∑
x∈V†

expw · φ(x)
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Quick Recap

Two kinds of language models so far:

representation? estimation? think about?

n-gram hi is (n− 1) previous symbols count and normalize smoothing

log-linear featurized representation of 〈hi, xi〉 iterative gradient descent features
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Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:
I A function family that maps parameter values to functions of the form
n : Rdin → Rdout ; typically:

I Non-linear
I Differentiable with respect to its inputs
I “Assembled” through a series of affine transformations and non-linearities, composed

together
I Symbolic/discrete inputs handled through lookups.

I Parameter values ν
I Typically a collection of scalars, vectors, and matrices
I We often assume they are linearized into RD
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A Couple of Useful Functions
I softmax : Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
I tanh : R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k.
I Others include: ReLUs, logistic sigmoids, PReLUs, . . .
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“One Hot” Vectors

Arbitrarily order the words in V, giving each an index in {1, . . . , V }.

Let ei ∈ RV contain all zeros, with the exception of a 1 in position i.

This is the “one hot” vector for the ith word in V.
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Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj
V

>M
V × d

Aj
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hjM Tj
d×H


where each ehj ∈ RV is a one-hot vector and H is the number of “hidden units” in the
neural network (a “hyperparameter”).

Parameters ν include:

I M ∈ RV×d, which are called “embeddings” (row vectors), one for every word in V
I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V , W ∈ RV×H , u ∈ RH ,

T ∈ R(n−1)×d×H
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Breaking It Down

Look up each of the history words hj , ∀j ∈ {1, . . . , n− 1} in M; keep two copies.

ehj
V

>M
V × d

ehj
V

>M
V × d

26 / 35



Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in M; keep two copies.
Rename the embedding for hj as mhj .

ehj
>M = mhj

ehj
>M = mhj
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Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T)

mhj

u
H

+

n−1∑
j=1

mhj Tj
d×H
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Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T) and a tanh nonlinearity.

mhj

tanh

 u +

n−1∑
j=1

mhj Tj


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Breaking It Down

Apply an affine transformation to everything (b, A, W).

b
V

+

n−1∑
j=1

mhj Aj
d× V

+ W
V ×H

tanh

 u +

n−1∑
j=1

mhj Tj


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Breaking It Down

Apply a softmax transformation to make the vector sum to one.

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +
n−1∑
j=1

mhj Tj


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Breaking It Down

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +

n−1∑
j=1

mhj Tj


Like a log-linear language model with two kinds of features:

I Concatenation of context-word embeddings vectors mhj

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformation “inside” the
nonlinearity.
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Visualization

M
u,
T

b, A

tanh

so
ftm
axW
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Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
I V ≈ 18000 (after OOV processing)
I d ∈ {30, 60}
I H ∈ {50, 100}
I n− 1 = 5

So D = 461V + 30100 parameters, compared to O(V n) for classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a bit better, but was
slower to converge.

I If we averaged mhj instead of concatenating, we’d get to 221V + 6100 (this is a
variant of “continuous bag of words,” Mikolov et al., 2013).

34 / 35



References I

Galen Andrew and Jianfeng Gao. Scalable training of `1-regularized log-linear models. In Proc. of ICML, 2007.
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