
Natural Language Processing (CSE 517):
Neural Language Models

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 11, 2018

1 / 46



Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

Today: neural language models

2 / 46



Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj

V

>M
V × d

Aj
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hj
M Tj

d×H


where each ehj

∈ RV is a one-hot vector and H is the number of “hidden units” in the
neural network (a “hyperparameter”).

Parameters ν include:

I M ∈ RV×d, which are called “embeddings” (row vectors), one for every word in V
I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V , W ∈ RV×H , u ∈ RH ,

T ∈ R(n−1)×d×H

3 / 46



Visualization

M
u,
T

b, A

tanh

so
ftm
axW

4 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

5 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

6 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

7 / 46



xor Example

x1

x2

y

Tuples where y = xor(x1, x2) are red; tuples where y 6= xor(x1, x2) are blue.

8 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

9 / 46



xor Example (D = 13)
Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)

●

●●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●

0 5 10 15 20 25 30

0
1

2
3

4
5

iterations

m
ea

n 
sq

ua
re

d 
er

ro
r

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

>
(
W
3× 2

x
2

+ b
3

)
+ a

)2

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

> tanh

(
W
3× 2

x
2

+ b
3

)
+ a

)2

10 / 46

https://github.com/clab/cnn/blob/master/examples/xor.cc


Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

11 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

12 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

13 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

14 / 46



Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
ou should think of this as a generalization of the discrete view of V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction techniques for
information retrieval-style querying of text collections.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic theories, e.g., marking
nouns as “animate” or not.

15 / 46



Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
You should think of this as a generalization of the discrete view of V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction techniques for
information retrieval-style querying of text collections.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic theories, e.g., marking
nouns as “animate” or not.

16 / 46



Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
You should think of this as a generalization of the discrete view of V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction techniques for
information retrieval-style querying of text collections.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic theories, e.g., marking
nouns as “animate” or not.

17 / 46



Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
You should think of this as a generalization of the discrete view of V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction techniques for
information retrieval-style querying of text collections.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic theories, e.g., marking
nouns as “animate” or not.

18 / 46



Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
You should think of this as a generalization of the discrete view of V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction techniques for
information retrieval-style querying of text collections.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic theories, e.g., marking
nouns as “animate” or not.

19 / 46



Words as Vectors: Example

baby

cat

20 / 46



Words as Vectors: Example

baby

cat

pig

mouse

21 / 46



Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).

22 / 46



Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).

Good news:

I νν is differentiable with respect to M (from which its inputs come) and ν (its
parameters), so gradient-based methods are available.

Lots more details in Bengio et al. (2003) and (for NNs more generally) in Goldberg
(2015).

23 / 46



What’s Coming Up

I The log-bilinear language model

I Recurrent neural network language models

24 / 46



Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv



I Number of parameters: D = V d︸︷︷︸
M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw last time).

I Later work explored variations to make learning faster (related to class-based
models we saw earlier).

25 / 46



Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw last time).

I Later work explored variations to make learning faster (related to class-based
models we saw earlier).

26 / 46



Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw last time).

I Later work explored variations to make learning faster (related to class-based
models we saw earlier).

27 / 46



Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw last time).

I Later work explored variations to make learning faster (related to class-based
models we saw earlier).

28 / 46



Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw last time).

I Later work explored variations to make learning faster (related to class-based
models we saw earlier). 29 / 46



Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

30 / 46



Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.
I Parameters of these models are hard to interpret.

I Example: `2-norm of Aj,∗,∗ and Tj,∗,∗ in the feedforward model correspond to the
importance of history position j.

I Individual word embeddings can be clustered and dimensions can be analyzed (e.g.,
Tsvetkov et al., 2015).

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

31 / 46



Recurrent Neural Network

I Each input element is understood to be an element of a sequence: 〈x1,x2, . . . ,x`〉
I At each timestep t:

I The tth input element xt is processed alongside the previous state st−1 to calculate
the new state (st).

I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = frecurrent(xt, st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as vectors (respectively,
xt = ext and st).

32 / 46



RNN Language Model

The original version, by Mikolov et al. (2010) used a “simple” RNN architecture along
these lines:

st = frecurrent(ext , st−1) = sigmoid

((
e>xt

M
)>

A+ s>t−1B+ c

)
yt = foutput(st) = softmax

(
s>t U

)
p(v | x1, . . . , xt−1) = [yt]v

Note: this is not an n-gram (Markov) model!

33 / 46



Visualization

M
A,
B,
c

sig
m

oid

so
ftm

ax

U

st - 1

st

ytxt

34 / 46



Visualization

M
A,
B,
c

sig
m
oid

so
ftm
ax

U
M

A,
B,
c

sig
m
oid

so
ftm
ax

U
M

A,
B,
c

sig
m
oid

so
ftm
ax

U
M

A,
B,
c

sig
m
oid

so
ftm
ax

U

35 / 46



Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to propagate error into the
distant past.

I State tends to change a lot on each iteration; the model “forgets” too much.

Some variants:

I “Stacking” these functions to make deeper networks.

I Sundermeyer et al. (2012) use “long short-term memories” (LSTMs; see Olah,
2015) and Cho et al. (2014) use “gated recurrent units” (GRUs) to define
frecurrent.

I Mikolov et al. (2014) engineer the linear transformation in the simple RNN for
better preservation.

I Jozefowicz et al. (2015) used randomized search to find even better architectures.

36 / 46



Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist
What do we engineer? features, assumptions architectures

Theory? as N gets large not really

Interpretation of parame-
ters?

often easy usually hard

37 / 46



Parting Shots

I I said very little about estimating the parameters.

I At present, it’s almost always stochastic gradient descent with heavy use of the
chain rule from calculus (“backpropagation”).

I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

38 / 46



Parting Shots

I I said very little about estimating the parameters.

I At present, it’s almost always stochastic gradient descent with heavy use of the
chain rule from calculus (“backpropagation”).

I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

39 / 46



Parting Shots

I I said very little about estimating the parameters.
I At present, it’s almost always stochastic gradient descent with heavy use of the

chain rule from calculus (“backpropagation”).

I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

40 / 46



Parting Shots

I I said very little about estimating the parameters.
I At present, it’s almost always stochastic gradient descent with heavy use of the

chain rule from calculus (“backpropagation”).
I New libraries to help you are coming out all the time.

I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

41 / 46



Parting Shots

I I said very little about estimating the parameters.
I At present, it’s almost always stochastic gradient descent with heavy use of the

chain rule from calculus (“backpropagation”).
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

42 / 46



Parting Shots

I I said very little about estimating the parameters.
I At present, it’s almost always stochastic gradient descent with heavy use of the

chain rule from calculus (“backpropagation”).
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

43 / 46



Parting Shots

I I said very little about estimating the parameters.
I At present, it’s almost always stochastic gradient descent with heavy use of the

chain rule from calculus (“backpropagation”).
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).

44 / 46



References I

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model.
Journal of Machine Learning Research, 3(Feb):1137–1155, 2003. URL
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical machine
translation. In Proc. of EMNLP, 2014.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):
391–407, 1990.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

Yoav Goldberg. A primer on neural network models for natural language processing, 2015. URL
http://u.cs.biu.ac.il/~yogo/nnlp.pdf.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent network
architectures. In Proc. of ICML, 2015. URL
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In Proc. of Interspeech, 2010. URL http:

//www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf.

45 / 46

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf


References II

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio Ranzato. Learning longer
memory in recurrent neural networks, 2014. arXiv:1412.7753.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language modelling. In Proc. of
ICML, 2007.

Christopher Olah. Understanding LSTM networks, 2015. URL
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language modeling. In Proc.
of Interspeech, 2012.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer. Evaluation of word vector
representations by subspace alignment. In Proc. of EMNLP, 2015.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37(1):141–188, 2010. URL
https://www.jair.org/media/2934/live-2934-4846-jair.pdf.

46 / 46

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.jair.org/media/2934/live-2934-4846-jair.pdf

