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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

Today: neural language models
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Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:
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(
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where each ehj

∈ RV is a one-hot vector and H is the number of “hidden units” in the
neural network (a “hyperparameter”).

Parameters ν include:

I M ∈ RV×d, which are called “embeddings” (row vectors), one for every word in V
I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V , W ∈ RV×H , u ∈ RH ,

T ∈ R(n−1)×d×H
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Visualization
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

5 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

6 / 46



Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

7 / 46



xor Example

x1

x2

y

Tuples where y = xor(x1, x2) are red; tuples where y 6= xor(x1, x2) are blue.
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.
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xor Example (D = 13)
Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)
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Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
ou should think of this as a generalization of the discrete view of V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction techniques for
information retrieval-style querying of text collections.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic theories, e.g., marking
nouns as “animate” or not.
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Words as Vectors: Example

baby

cat
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Words as Vectors: Example

baby

cat

pig

mouse
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Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).
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Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).

Good news:

I νν is differentiable with respect to M (from which its inputs come) and ν (its
parameters), so gradient-based methods are available.

Lots more details in Bengio et al. (2003) and (for NNs more generally) in Goldberg
(2015).
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What’s Coming Up

I The log-bilinear language model

I Recurrent neural network language models
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Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

mv′
d

+cv



I Number of parameters: D = V d︸︷︷︸
M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw last time).

I Later work explored variations to make learning faster (related to class-based
models we saw earlier).
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Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.
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I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.
I Parameters of these models are hard to interpret.

I Example: `2-norm of Aj,∗,∗ and Tj,∗,∗ in the feedforward model correspond to the
importance of history position j.

I Individual word embeddings can be clustered and dimensions can be analyzed (e.g.,
Tsvetkov et al., 2015).

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.
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Recurrent Neural Network

I Each input element is understood to be an element of a sequence: 〈x1,x2, . . . ,x`〉
I At each timestep t:

I The tth input element xt is processed alongside the previous state st−1 to calculate
the new state (st).

I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = frecurrent(xt, st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as vectors (respectively,
xt = ext and st).
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RNN Language Model

The original version, by Mikolov et al. (2010) used a “simple” RNN architecture along
these lines:

st = frecurrent(ext , st−1) = sigmoid

((
e>xt

M
)>

A+ s>t−1B+ c

)
yt = foutput(st) = softmax

(
s>t U

)
p(v | x1, . . . , xt−1) = [yt]v

Note: this is not an n-gram (Markov) model!
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Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to propagate error into the
distant past.

I State tends to change a lot on each iteration; the model “forgets” too much.

Some variants:

I “Stacking” these functions to make deeper networks.

I Sundermeyer et al. (2012) use “long short-term memories” (LSTMs; see Olah,
2015) and Cho et al. (2014) use “gated recurrent units” (GRUs) to define
frecurrent.

I Mikolov et al. (2014) engineer the linear transformation in the simple RNN for
better preservation.

I Jozefowicz et al. (2015) used randomized search to find even better architectures.
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Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist
What do we engineer? features, assumptions architectures

Theory? as N gets large not really

Interpretation of parame-
ters?

often easy usually hard

37 / 46



Parting Shots

I I said very little about estimating the parameters.

I At present, it’s almost always stochastic gradient descent with heavy use of the
chain rule from calculus (“backpropagation”).

I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about probabilistic
models relating a word and its cotext (textual context).
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