Natural Language Processing (CSE 517):
 Language Models

Noah Smith
(c) 2018
University of Washington
nasmith@cs.washington.edu

March 30, 2018

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "
- Joint probability: $p(X=x, Y=y)$

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "
- Joint probability: $p(X=x, Y=y)$
- Conditional probability: $p(X=x \mid Y=y)$

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})-in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "
- Joint probability: $p(X=x, Y=y)$
- Conditional probability: $p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}$

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "
- Joint probability: $p(X=x, Y=y)$
- Conditional probability: $p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}$
- Always true:

$$
p(X=x, Y=y)=p(X=x \mid Y=y) \cdot p(Y=y)=p(Y=y \mid X=x) \cdot p(X=x)
$$

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "
- Joint probability: $p(X=x, Y=y)$
- Conditional probability: $p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}$
- Always true:

$$
p(X=x, Y=y)=p(X=x \mid Y=y) \cdot p(Y=y)=p(Y=y \mid X=x) \cdot p(X=x)
$$

- Sometimes true: $p(X=x, Y=y)=p(X=x) \cdot p(Y=y)$

Very Quick Review of Probability

- Event space (e.g., \mathcal{X}, \mathcal{Y})—in this class, usually discrete
- Random variables (e.g., X, Y)
- Typical statement: "random variable X takes value $x \in \mathcal{X}$ with probability $p(X=x)$, or, in shorthand, $p(x)$ "
- Joint probability: $p(X=x, Y=y)$
- Conditional probability: $p(X=x \mid Y=y)=\frac{p(X=x, Y=y)}{p(Y=y)}$
- Always true:

$$
p(X=x, Y=y)=p(X=x \mid Y=y) \cdot p(Y=y)=p(Y=y \mid X=x) \cdot p(X=x)
$$

- Sometimes true: $p(X=x, Y=y)=p(X=x) \cdot p(Y=y)$
- The difference between true and estimated probability distributions

Language Models: Definitions

- \mathcal{V} is a finite set of (discrete) symbols (© "words" or possibly characters); $V=|\mathcal{V}|$
- \mathcal{V}^{\dagger} is the (infinite) set of sequences of symbols from \mathcal{V} whose final symbol is
- $p: \mathcal{V}^{\dagger} \rightarrow \mathbb{R}$, such that:
- For any $\boldsymbol{x} \in \mathcal{V}^{\dagger}, p(\boldsymbol{x}) \geq 0$
- $\sum_{\boldsymbol{x} \in \mathcal{V}^{+}} p(\boldsymbol{X}=\boldsymbol{x})=1$
(I.e., p is a proper probability distribution.)

Language modeling: estimate p from examples, $\boldsymbol{x}_{1: n}=\left\langle\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\rangle$.

Immediate Objections

1. Why would we want to do this?
2. Are the nonnegativity and sum-to-one constraints really necessary?
3. Is "finite \mathcal{V} " realistic?

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, \boldsymbol{D} and \boldsymbol{O} :

$$
\text { source } \longrightarrow D \longrightarrow \text { channel } \longrightarrow O
$$

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, \boldsymbol{D} and \boldsymbol{O} :

$$
\text { source } \longrightarrow D \longrightarrow \text { channel } \longrightarrow O
$$

- \boldsymbol{D} is the plaintext, the true message, the missing information, the output

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, \boldsymbol{D} and \boldsymbol{O} :

$$
\text { source } \longrightarrow D \longrightarrow \text { channel } \longrightarrow O
$$

- \boldsymbol{D} is the plaintext, the true message, the missing information, the output
- \boldsymbol{O} is the ciphertext, the garbled message, the observable evidence, the input

Motivation: Noisy Channel Models

A pattern for modeling a pair of random variables, \boldsymbol{D} and \boldsymbol{O} :

$$
\text { source } \longrightarrow D \longrightarrow \text { channel } \longrightarrow O
$$

- \boldsymbol{D} is the plaintext, the true message, the missing information, the output
- \boldsymbol{O} is the ciphertext, the garbled message, the observable evidence, the input
- Decoding: select \boldsymbol{d} given $\boldsymbol{O}=\boldsymbol{o}$.

$$
\begin{aligned}
\boldsymbol{d}^{*} & =\underset{\boldsymbol{d}}{\operatorname{argmax}} p(\boldsymbol{d} \mid \boldsymbol{o}) \\
& =\underset{\boldsymbol{d}}{\operatorname{argmax}} \frac{p(\boldsymbol{o} \mid \boldsymbol{d}) \cdot p(\boldsymbol{d})}{p(\boldsymbol{o})} \\
& =\underset{\boldsymbol{d}}{\operatorname{argmax}} \underbrace{p(\boldsymbol{o} \mid \boldsymbol{d})}_{\text {chanel model source model }} \cdot \underbrace{p(\boldsymbol{d})}
\end{aligned}
$$

Noisy Channel Example: Speech Recognition

$$
\text { source } \longrightarrow \text { sequence in } \mathcal{V}^{\dagger} \longrightarrow \text { channel } \longrightarrow \text { acoustics }
$$

- Acoustic model defines p (sounds $\mid \boldsymbol{d}$) (channel)
- Language model defines $p(\boldsymbol{d})$ (source)

Noisy Channel Example: Speech Recognition

Credit: Luke Zettlemoyer

word sequence $\quad \log p$ (acoustics \| word sequence)	
the station signs are in deep in english	-14732
the stations signs are in deep in english	-14735
the station signs are in deep into english	-14739
the station 's signs are in deep in english	-14740
the station signs are in deep in the english	-14741
the station signs are indeed in english	-14757
the station 's signs are indeed in english	-14760
the station signs are indians in english	-14790
the station signs are indian in english	-14799
the stations signs are indians in english	-14807
the stations signs are indians and english	-14815

Noisy Channel Example: Machine Translation

Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

Warren Weaver, 1955

Noisy Channel Examples

- Speech recognition
- Machine translation
- Optical character recognition
- Spelling and grammar correction

"Conditional" Language Models

Instead of $p(\boldsymbol{X})$, model $p(\boldsymbol{X} \mid$ Context $)$.

- Context could be an input (acoustics, source-language sentence, image of text) ... or it could be something else (visual input, stock prices, ...)
- Made possible by advances in machine learning!

Immediate Objections

1. Why would we want to do this?
2. Are the nonnegativity and sum-to-one constraints really necessary?
3. Is "finite \mathcal{V} " realistic?

Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have not seen before.
For out-of-sample ("held-out" or "test") data $\overline{\boldsymbol{x}}_{1: m}$:

- Probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\prod_{i=1}^{m} p\left(\overline{\boldsymbol{x}}_{i}\right)$

Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have not seen before.
For out-of-sample ("held-out" or "test") data $\overline{\boldsymbol{x}}_{1: m}$:

- Probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\prod_{i=1}^{m} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Log-probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)$

Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have not seen before.
For out-of-sample ("held-out" or "test") data $\overline{\boldsymbol{x}}_{1: m}$:

- Probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\prod_{i=1}^{m} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Log-probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Average log-probability per word of $\bar{x}_{1: m}$ is

$$
l=\frac{1}{M} \sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)
$$

if $M=\sum_{i=1}^{m}\left|\overline{\boldsymbol{x}}_{i}\right|$ (total number of words in the corpus)

Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have not seen before.
For out-of-sample ("held-out" or "test") data $\overline{\boldsymbol{x}}_{1: m}$:

- Probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\prod_{i=1}^{m} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Log-probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Average log-probability per word of $\bar{x}_{1: m}$ is

$$
l=\frac{1}{M} \sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)
$$

if $M=\sum_{i=1}^{m}\left|\overline{\boldsymbol{x}}_{i}\right|$ (total number of words in the corpus)

- Perplexity (relative to $\overline{\boldsymbol{x}}_{1: m}$) is 2^{-l}

Evaluation: Perplexity

Intuitively, language models should assign high probability to real language they have not seen before.
For out-of-sample ("held-out" or "test") data $\overline{\boldsymbol{x}}_{1: m}$:

- Probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\prod_{i=1}^{m} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Log-probability of $\overline{\boldsymbol{x}}_{1: m}$ is $\sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)$
- Average log-probability per word of $\overline{\boldsymbol{x}}_{1: m}$ is

$$
l=\frac{1}{M} \sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)
$$

if $M=\sum_{i=1}^{m}\left|\overline{\boldsymbol{x}}_{i}\right|$ (total number of words in the corpus)

- Perplexity (relative to $\overline{\boldsymbol{x}}_{1: m}$) is 2^{-l}

Lower is better.

Understanding Perplexity

$$
2^{-\frac{1}{M}} \sum_{i=1}^{m} \log _{2} p\left(\overline{\boldsymbol{x}}_{i}\right)
$$

It's a branching factor!

- Assign probability of 1 to the test data \Rightarrow perplexity $=1$
- Assign probability of $\frac{1}{|\mathcal{V}|}$ to every word \Rightarrow perplexity $=|\mathcal{V}|$
- Assign probability of 0 to anything \Rightarrow perplexity $=\infty$
- This motivates a stricter constraint than we had before:
- For any $\boldsymbol{x} \in \mathcal{V}^{\dagger}, p(\boldsymbol{x})>0$

Perplexity

- Perplexity on conventionally accepted test sets is often reported in papers.
- Generally, I won't discuss perplexity numbers much, because:
- Perplexity is only an intermediate measure of performance.
- Understanding the models is more important than remembering how well they perform on particular train/test sets.
- If you're curious, look up numbers in the literature; always take them with a grain of salt!

Immediate Objections

1. Why would we want to do this?
2. Are the nonnegativity and sum-to-one constraints really necessary?
3. Is "finite \mathcal{V} " realistic?

Is "finite \mathcal{V} " realistic?

No

Is "finite \mathcal{V} " realistic?

$$
\begin{gathered}
\text { No } \\
\text { no } \\
\text { n0 } \\
\text {-no } \\
\text { notta } \\
\text { No } \\
\text { /no } \\
\text { / /no } \\
\text { (no } \\
\text { |no }
\end{gathered}
$$

The Language Modeling Problem

Input: $\boldsymbol{x}_{1: n}$ ("training data")
Output: $p: \mathcal{V}^{\dagger} \rightarrow \mathbb{R}^{+}$
© p should be a "useful" measure of plausibility (not grammaticality).

A Trivial Language Model

$$
p(\boldsymbol{x})=\frac{\left|\left\{i \mid \boldsymbol{x}_{i}=\boldsymbol{x}\right\}\right|}{n} \quad=\frac{c_{\boldsymbol{x}_{1: n}}(\boldsymbol{x})}{n}
$$

A Trivial Language Model

$$
p(\boldsymbol{x})=\frac{\left|\left\{i \mid \boldsymbol{x}_{i}=\boldsymbol{x}\right\}\right|}{n} \quad=\frac{c_{\boldsymbol{x}_{1: n}}(\boldsymbol{x})}{n}
$$

What if x is not in the training data?

Using the Chain Rule

$$
\begin{aligned}
p(\boldsymbol{X}=\boldsymbol{x}) & =\left(\begin{array}{l}
p\left(X_{1}=x_{1} \mid X_{0}=x_{0}\right) \\
\cdot p\left(X_{2}=x_{2} \mid X_{0: 1}=x_{0: 1}\right) \\
\cdot p\left(X_{3}=x_{3} \mid X_{0: 2}=x_{0: 2}\right) \\
\vdots \\
\cdot p\left(X_{\ell}=\bigcirc \mid X_{0: \ell-1}=x_{0: \ell-1}\right)
\end{array}\right) \\
= & \prod_{j=1}^{\ell} p\left(X_{j}=x_{j} \mid X_{0: j-1}=x_{0: j-1}\right)
\end{aligned}
$$

Unigram Model

$$
\begin{aligned}
& p(\boldsymbol{X}=\boldsymbol{x})=\prod_{j=1}^{\ell} p\left(X_{j}=x_{j} \mid X_{0: j-1}=x_{0: j-1}\right) \\
& \stackrel{\text { assumption }}{=} \prod_{j=1}^{\ell} p_{\boldsymbol{\theta}}\left(X_{j}=x_{j}\right)=\prod_{j=1}^{\ell} \theta_{x_{j}} \approx \prod_{j=1}^{\ell} \hat{\theta}_{x_{j}}
\end{aligned}
$$

Maximum likelihood estimate:

$$
\begin{aligned}
\forall v \in \mathcal{V}, \hat{\theta}_{v} & =\frac{\left|\left\{i, j \mid\left[\boldsymbol{x}_{i}\right]_{j}=v\right\}\right|}{N} \\
& =\frac{c_{\boldsymbol{x}_{1: n}}(v)}{N}
\end{aligned}
$$

where $N=\sum_{i=1}^{n}\left|\boldsymbol{x}_{i}\right|$.
Also known as "relative frequency estimation."

Unigram Model

$$
\begin{aligned}
& p(\boldsymbol{X}=\boldsymbol{x})=\prod_{j=1}^{\ell} p\left(X_{j}=x_{j} \mid X_{0: j-1}=x_{0: j-1}\right) \\
& \stackrel{\text { assumption }}{=} \prod_{j=1}^{\ell} p_{\boldsymbol{\theta}}\left(X_{j}=x_{j}\right)=\prod_{j=1}^{\ell} \theta_{x_{j}} \approx \prod_{j=1}^{\ell} \hat{\theta}_{x_{j}}
\end{aligned}
$$

Maximum likelihood estimate:

$$
\begin{aligned}
\forall v \in \mathcal{V}, \hat{\theta}_{v} & =\frac{\left|\left\{i, j \mid\left[\boldsymbol{x}_{i}\right]_{j}=v\right\}\right|}{N} \\
& =\frac{c_{\boldsymbol{x}_{1: n}}(v)}{N}
\end{aligned}
$$

where $N=\sum_{i=1}^{n}\left|\boldsymbol{x}_{i}\right|$.
Also known as "relative frequency estimation."

Relative Frequency Estimation is the MLE

(Unigram Model)

The maximum likelihood estimation problem:

$$
\max _{\boldsymbol{\theta} \in \Delta|\boldsymbol{V}|} p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1: n}\right)
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Logarithm is a monotonic function.

$$
\max _{\boldsymbol{\theta} \in \triangle|\mathcal{V}|} p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1: n}\right)=\exp \max _{\boldsymbol{\theta} \in \triangle|\mathcal{V}|} \log p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1: n}\right)
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Each sequence is an independent sample from the model.

$$
\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \log p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1: n}\right)=\max _{\boldsymbol{\theta} \in \triangle|\mathcal{V}|} \log \prod_{i=1}^{n} p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Plug in the form of the unigram model.

$$
\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \log \prod_{i=1}^{n} p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)=\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \log \prod_{i=1}^{n} \prod_{j=1}^{\ell_{i}} \theta_{\left[\boldsymbol{x}_{i}\right]_{j}}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Log of product equals sum of logs.

$$
\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \log \prod_{i=1}^{n} \prod_{j=1}^{\ell_{i}} \theta_{\left[\boldsymbol{x}_{i}\right]_{j}}=\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \sum_{i=1}^{n} \sum_{j=1}^{\ell_{i}} \log \theta_{\left[\boldsymbol{x}_{i}\right]_{j}}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Convert from tokens to types.

$$
\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \sum_{i=1}^{n} \sum_{j=1}^{\ell_{i}} \log \theta_{\left[\boldsymbol{x}_{i}\right]_{j}}=\max _{\boldsymbol{\theta} \in \Delta|\mathcal{V}|} \sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Convert to a minimization problem (for consistency with textbooks).

$$
\max _{\boldsymbol{\theta} \in \Delta_{|\mathcal{V}|}} \sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}=\min _{\boldsymbol{\theta} \in \triangle|\mathcal{V}|}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)
Lagrange multiplier to convert to a less constrained problem.

$$
\begin{array}{r}
\min _{\boldsymbol{\theta} \in \triangle|\mathcal{V}|}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v} \\
=\max _{\mu \geq 0} \min _{\boldsymbol{\theta} \in \mathbb{R}_{\geq 0}^{|\mathcal{V}|}}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}-\mu\left(1-\sum_{v \in \mathcal{V}} \theta_{v}\right) \\
=\min _{\boldsymbol{\theta} \in \mathbb{R}_{\geq 0}^{|\mathcal{V}|}} \max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}-\mu\left(1-\sum_{v \in \mathcal{V}} \theta_{v}\right)
\end{array}
$$

Intuitively, if $\sum_{v \in \mathcal{V}} \theta_{v}$ gets too big, μ will push toward $+\infty$.
For more about Lagrange multipliers, see Dan Klein's tutorial (reference at the end of these slides).

Relative Frequency Estimation is the MLE

(Unigram Model)

Use first-order conditions to solve for $\boldsymbol{\theta}$ in terms of μ.

$$
\min _{\boldsymbol{\theta} \in \mathbb{R}_{\geq 0}^{|\mathcal{V}|}} \max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}-\mu\left(1-\sum_{v \in \mathcal{V}} \theta_{v}\right)
$$

fixing μ, for all v, set: $0=\frac{\partial}{\partial \theta_{v}}$

$$
\begin{aligned}
& =\frac{-c_{\boldsymbol{x}_{1: n}}(v)}{\theta_{v}}+\mu \\
\theta_{v} & =\frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}
\end{aligned}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

Plug in for each θ_{v}.

$$
\begin{array}{r}
\min _{\boldsymbol{\theta} \in \mathbb{R} \geq 0} \max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \theta_{v}-\mu\left(1-\sum_{v \in \mathcal{V}} \theta_{v}\right) \\
=\max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}-\mu\left(1-\sum_{v \in \mathcal{V}} \frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}\right)
\end{array}
$$

$$
\text { Remember: } \forall v \in \mathcal{V}, \theta_{v}=\frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)

$$
\begin{aligned}
& \text { Rearrange terms }\left(a \log \frac{a}{b}=a \log a-a \log b \text { and } N=\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v)\right) \\
& \qquad \begin{array}{r}
\max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log \frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}-\mu\left(1-\sum_{v \in \mathcal{V}} \frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}\right) \\
=\max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log c_{\boldsymbol{x}_{1: n}}(v)+N \log \mu-\mu+N
\end{array}
\end{aligned}
$$

$$
\text { Remember: } \forall v \in \mathcal{V}, \theta_{v}=\frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}
$$

Relative Frequency Estimation is the MLE

(Unigram Model)
Use first-order conditions to solve for μ.

$$
\max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log c_{\boldsymbol{x}_{1: n}}(v)+N \log \mu-\mu+N
$$

$$
\text { set: } \begin{aligned}
0 & =\frac{\partial}{\partial \mu} \\
& =\frac{N}{\mu}-1 \\
\mu & =N
\end{aligned}
$$

Remember: $\forall v \in \mathcal{V}, \theta_{v}=\frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}$

Relative Frequency Estimation is the MLE

(Unigram Model)

Plug in for μ.

$$
\begin{array}{r}
\max _{\mu \geq 0}-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log c_{\boldsymbol{x}_{1: n}}(v)+N \log \mu-\mu+N \\
=-\sum_{v \in \mathcal{V}} c_{\boldsymbol{x}_{1: n}}(v) \log c_{\boldsymbol{x}_{1: n}}(v)+N \log N
\end{array}
$$

$$
\forall v \in \mathcal{V}, \theta_{v}=\frac{c_{\boldsymbol{x}_{1: n}}(v)}{\mu}=\frac{c_{\boldsymbol{x}_{1: n}}(v)}{N}
$$

... and that's the relative frequency estimate!

Unigram Models: Assessment

Pros:

- Easy to understand
- Cheap
- Good enough for information retrieval (maybe)

Cons:

- "Bag of words" assumption is linguistically inaccurate
- p (the the the the) \gg p (I want ice cream)
- Data sparseness; high variance in the estimator
- "Out of vocabulary" problem

Markov Models $\equiv \mathrm{n}$-gram Models

$$
\begin{aligned}
p(\boldsymbol{X}=\boldsymbol{x}) & =\prod_{j=1}^{\ell} p\left(X_{j}=x_{j} \mid X_{0: j-1}=x_{0: j-1}\right) \\
& \stackrel{\text { assumption }}{=} \prod_{j=1}^{\ell} p_{\boldsymbol{\theta}}\left(X_{j}=x_{j} \mid X_{j-\mathrm{n}+1: j-1}=x_{j-\mathrm{n}+1: j-1}\right)
\end{aligned}
$$

($\mathrm{n}-1$)th-order Markov assumption $\equiv \mathrm{n}$-gram model

- Unigram model is the $\mathrm{n}=1$ case
- For a long time, trigram models $(\mathrm{n}=3)$ were widely used
- 5-gram models $(\mathrm{n}=5)$ were common in MT for a time

Estimating n-Gram Models

$$
\begin{array}{rlll}
& \text { unigram } & \text { bigram } & \text { trigram } \\
p_{\boldsymbol{\theta}}(\boldsymbol{x})= & \prod_{j=1}^{\ell} \theta_{x_{j}} & \prod_{j=1}^{\ell} \theta_{x_{j} \mid x_{j-1}} & \prod_{j=1}^{\ell} \theta_{x_{j} \mid x_{j-2} x_{j-1}} \\
\text { Parameters: } & \theta_{v} & \theta_{v \mid v^{\prime}} & \theta_{v \mid v^{\prime \prime} v^{\prime}} \\
& \forall v \in \mathcal{V} & \forall v \in \mathcal{V}, v^{\prime} \in \mathcal{V} \cup\{\bigcirc\} & \forall v \in \mathcal{V}, v^{\prime}, v^{\prime \prime} \in \mathcal{V} \cup\{\bigcirc\} \\
\text { MLE: } & \frac{c(v)}{N} & \frac{c\left(v^{\prime} v\right)}{\sum_{u \in \mathcal{V}} c\left(v^{\prime} u\right)} & \frac{c\left(v^{\prime \prime} v^{\prime} v\right)}{\sum_{u \in \mathcal{V}} c\left(v^{\prime \prime} v^{\prime} u\right)}
\end{array}
$$

General case:
$\prod_{j=1}^{\ell} \theta_{x_{j} \mid \boldsymbol{x}_{j-\mathrm{n}+1: j-1}}$

$$
\theta_{v \mid \boldsymbol{h}}, \forall v \in \mathcal{V}, \boldsymbol{h} \in(\mathcal{V} \cup\{\bigcirc\})^{n-1}
$$

$$
\frac{c(\boldsymbol{h} v)}{\sum_{u \in \mathcal{V}} c(\boldsymbol{h} u)}
$$

The Problem with MLE

- The curse of dimensionality: the number of parameters grows exponentially in n
- Data sparseness: most n-grams will never be observed, even if they are linguistically plausible
- No one actually uses the MLE!

Smoothing

A few years ago, l'd have spent a whole lecture on this! :

- Simple method: add $\lambda>0$ to every count (including zero-counts) before normalizing
- What makes it hard: ensuring that the probabilities over all sequences sum to one
- Otherwise, perplexity calculations break
- Longstanding champion: modified Kneser-Ney smoothing (Chen and Goodman, 1998)
- Stupid backoff: reasonable, easy solution when you don't care about perplexity (Brants et al., 2007)

References I

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language models in machine translation. In Proc. of EMNLP-CoNLL, 2007.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling. Technical Report TR-10-98, Center for Research in Computing Technology, Harvard University, 1998.

Dan Klein. Lagrange multipliers without permanent scarring, Undated. URL https://www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf.

