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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.
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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

Today: a few more details, then log-linear language models
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Interpolation

If p and q are both language models, then so is

αp+ (1− α)q

for any α ∈ [0, 1].

I This idea underlies many smoothing methods

I Often a new model q only beats a reigning champion p when interpolated with it

I How to pick the “hyperparameter” α?
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Algorithms To Know

I Score a sentence x

I Train from a corpus x1:n

I Sample a sentence given θ
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n-gram Models: Assessment

Pros:

I Easy to understand

I Cheap (with modern hardware; Lin
and Dyer, 2010)

I Good enough for machine
translation, speech recognition, . . .

Cons:

I Markov assumption is linguistically
inaccurate

I (But not as bad as unigram
models!)

I Data sparseness; high variance in the
estimator

I “Out of vocabulary” problem
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Dealing with Out-of-Vocabulary Terms

I Define a special OOV or “unknown” symbol unk. Transform some (or all) rare
words in the training data to unk.

I / You cannot fairly compare two language models that apply different unk
treatments!

I Build a language model at the character level.
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Class-Based Language Models
Brown et al. (1992)

Suppose we have a hard clustering of V, cl : V → {1, . . . , k}, where k � |V|.

n-gram class-based

pθ(x) =
∏̀
j=1

θxj |xj−n+1:j−1

∏̀
j=1

θxj |cl(xj)γcl(xj)|cl(xj−1)

Parameters: θv|h θv|cl(v) γi|j
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀v ∈ V ∀i, j ∈ {1, . . . , k}

MLE:
c(hv)

c(h)

c(v)

c(cl(v))

c(j)

c(ji)
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Language Models as (Weighted) Finite-State Automata

(Deterministic) finite-state automaton:
I Set of k states S

I Initial state s0 ∈ S
I Final states F ⊆ S

I Alphabet Σ

I Transitions δ : S × Σ→ S
A length ` string x is in the language of the automaton iff there is a path 〈s0, . . . , s`〉
such that s` ∈ F and

∧̀
i=1

[[si = δ(si−1, xi)]]
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Language Models as (Weighted) Finite-State Automata
(Deterministic) finite-state automaton:

I Set of k states S histories
I Initial state s0 ∈ S ©
I Final states F ⊆ S histories ending in 8

I Alphabet Σ V
I Transitions δ : S × Σ→ S ×R>0

A weighted FSA defines a weight for every transition; e.g., w(h, v, δ(h, v)) = θv|h
A length ` string x is in the language of the automaton iff there is a path 〈s0, . . . , s`〉
such that s` ∈ F and ∧̀

i=1

[[si = δ(si−1, xi)]]

The score of the string is the product of transition weights.

score(x)
∏̀
i=1

w(hi, xi, δ(hi, xi))
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What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).
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What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

Next central idea: teach histories and words how to share.
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What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

Central idea today: teach histories and words how to share.
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Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events/outputs (, for language modeling, V)

I X is the set of contexts/inputs (, for n-gram language modeling, Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)

16 / 61



Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

nonnegative expw · φ(x, y)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

“Log-linear” comes from the fact that:

log pw(Y = y | X = x) = w · φ(x, y)− logZw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models.
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Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.
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Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

= logit−1 (w · (φ(x,+1)− φ(x,−1)))
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Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)
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Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)

Alternately:

I d = |V|n

I φh̃,ṽ(h, v) =

{
1 if h = h̃ ∧ v = ṽ
0 otherwise

I wh̃,ṽ = log c(h̃ṽ)

c(h̃)

I Z(h) = 1
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

As a simple example, let the two features be binary functions.
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

w · φ = w1φ1 + w2φ2 = 0
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The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

distance(w · φ = 0,φ0) =
|w · φ0|
‖w‖2

∝ |w · φ0|
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

w · φ(x, y1) > w · φ(x, y3) > w · φ(x, y4) > 0 ≥ w · φ(x, y2)
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

pw(y1 | x) > pw(y3 | x) > pw(y4 | x) > pw(y2 | x)
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2
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(x, y4)
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

pw(y3 | x) > pw(y1 | x) > pw(y2 | x) > pw(y4 | x)
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The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

Log-linear parameter estimation tries to choose w so that pw(Y | x) matches the

empirical distribution, c(x,Y )
c(x) .
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Why Build Language Models This Way?

I Exploit features of histories for sharing of statistical strength and better
smoothing (Lau et al., 1993)

I Condition the whole text on more interesting variables like the gender, age, or
political affiliation of the author (Eisenstein et al., 2011)

I Interpretability!
I Each feature φk controls a factor to the probability (ewk).
I If wk < 0 then φk makes the event less likely by a factor of 1

ewk
.

I If wk > 0 then φk makes the event more likely by a factor of ewk .
I If wk = 0 then φk has no effect.

38 / 61



Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj |X1:j−1 = x1:j−1)

=
∏̀
j=1

expw · φ(x1:j−1, xj)

Zw(x1:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)

Zw(hj)
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Example

The man who knew too

much
many
little
few

...
hippopotamus
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What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”
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What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very low counts, can help.

I Too few (good) features, and your model will not learn /
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“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.
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I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!
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How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)

Zw(hj)

Parameters: θv|h wk

∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE:
c(hv)

c(h)
no closed form
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MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.
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MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.
I Zw(hi) involves a sum over V terms.

I Neat trick (Goodman, 2001): class-based model!
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