
Natural Language Processing (CSE 517):
Featurized Language Models

Noah Smith
c© 2018

University of Washington
nasmith@cs.washington.edu

April 4, 2018

1 / 61

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

2 / 61

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I Probabilities are estimated from data.

I Why?

3 / 61

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols

I Probabilities are estimated from data.

Today: a few more details, then log-linear language models

4 / 61

Interpolation

If p and q are both language models, then so is

αp+ (1− α)q

for any α ∈ [0, 1].

I This idea underlies many smoothing methods

I Often a new model q only beats a reigning champion p when interpolated with it

I How to pick the “hyperparameter” α?

5 / 61

Algorithms To Know

I Score a sentence x

I Train from a corpus x1:n

I Sample a sentence given θ

6 / 61

n-gram Models: Assessment

Pros:

I Easy to understand

I Cheap (with modern hardware; Lin
and Dyer, 2010)

I Good enough for machine
translation, speech recognition, . . .

Cons:

I Markov assumption is linguistically
inaccurate

I (But not as bad as unigram
models!)

I Data sparseness; high variance in the
estimator

I “Out of vocabulary” problem

7 / 61

Dealing with Out-of-Vocabulary Terms

I Define a special OOV or “unknown” symbol unk. Transform some (or all) rare
words in the training data to unk.

I / You cannot fairly compare two language models that apply different unk
treatments!

I Build a language model at the character level.

8 / 61

Class-Based Language Models
Brown et al. (1992)

Suppose we have a hard clustering of V, cl : V → {1, . . . , k}, where k � |V|.

n-gram class-based

pθ(x) =
∏̀
j=1

θxj |xj−n+1:j−1

∏̀
j=1

θxj |cl(xj)γcl(xj)|cl(xj−1)

Parameters: θv|h θv|cl(v) γi|j
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀v ∈ V ∀i, j ∈ {1, . . . , k}

MLE:
c(hv)

c(h)

c(v)

c(cl(v))

c(j)

c(ji)

9 / 61

Language Models as (Weighted) Finite-State Automata

(Deterministic) finite-state automaton:
I Set of k states S

I Initial state s0 ∈ S
I Final states F ⊆ S

I Alphabet Σ

I Transitions δ : S × Σ→ S
A length ` string x is in the language of the automaton iff there is a path 〈s0, . . . , s`〉
such that s` ∈ F and

∧̀
i=1

[[si = δ(si−1, xi)]]

10 / 61

Language Models as (Weighted) Finite-State Automata
(Deterministic) finite-state automaton:

I Set of k states S histories
I Initial state s0 ∈ S ©
I Final states F ⊆ S histories ending in 8

I Alphabet Σ V
I Transitions δ : S × Σ→ S ×R>0

A weighted FSA defines a weight for every transition; e.g., w(h, v, δ(h, v)) = θv|h
A length ` string x is in the language of the automaton iff there is a path 〈s0, . . . , s`〉
such that s` ∈ F and ∧̀

i=1

[[si = δ(si−1, xi)]]

The score of the string is the product of transition weights.

score(x)
∏̀
i=1

w(hi, xi, δ(hi, xi))

11 / 61

What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

12 / 61

What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

Next central idea: teach histories and words how to share.

13 / 61

What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

14 / 61

What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

Central idea today: teach histories and words how to share.

15 / 61

Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events/outputs (, for language modeling, V)

I X is the set of contexts/inputs (, for n-gram language modeling, Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)

16 / 61

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

17 / 61

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

18 / 61

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

nonnegative expw · φ(x, y)

19 / 61

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

20 / 61

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

“Log-linear” comes from the fact that:

log pw(Y = y | X = x) = w · φ(x, y)− logZw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models.
21 / 61

Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.

22 / 61

Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

= logit−1 (w · (φ(x,+1)− φ(x,−1)))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.

23 / 61

Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.

24 / 61

Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.

25 / 61

Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.

26 / 61

Special Case: Logistic Regression

Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) =
expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called multinomial logistic
regression.

27 / 61

Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)

28 / 61

Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)

Alternately:

I d = |V|n

I φh̃,ṽ(h, v) =

{
1 if h = h̃ ∧ v = ṽ
0 otherwise

I wh̃,ṽ = log c(h̃ṽ)

c(h̃)

I Z(h) = 1

29 / 61

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

As a simple example, let the two features be binary functions.

30 / 61

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

w · φ = w1φ1 + w2φ2 = 0

31 / 61

The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

distance(w · φ = 0,φ0) =
|w · φ0|
‖w‖2

∝ |w · φ0|

32 / 61

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

w · φ(x, y1) > w · φ(x, y3) > w · φ(x, y4) > 0 ≥ w · φ(x, y2)

33 / 61

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

pw(y1 | x) > pw(y3 | x) > pw(y4 | x) > pw(y2 | x)

34 / 61

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

35 / 61

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

pw(y3 | x) > pw(y1 | x) > pw(y2 | x) > pw(y4 | x)

36 / 61

The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

Log-linear parameter estimation tries to choose w so that pw(Y | x) matches the

empirical distribution, c(x,Y)
c(x) .

37 / 61

Why Build Language Models This Way?

I Exploit features of histories for sharing of statistical strength and better
smoothing (Lau et al., 1993)

I Condition the whole text on more interesting variables like the gender, age, or
political affiliation of the author (Eisenstein et al., 2011)

I Interpretability!
I Each feature φk controls a factor to the probability (ewk).
I If wk < 0 then φk makes the event less likely by a factor of 1

ewk
.

I If wk > 0 then φk makes the event more likely by a factor of ewk .
I If wk = 0 then φk has no effect.

38 / 61

Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj |X1:j−1 = x1:j−1)

=
∏̀
j=1

expw · φ(x1:j−1, xj)

Zw(x1:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)

Zw(hj)

39 / 61

Example

The man who knew too

much
many
little
few

...
hippopotamus

40 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

41 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

42 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

43 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

44 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

45 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

46 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very low counts, can help.

I Too few (good) features, and your model will not learn /

47 / 61

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very low counts, can help.

I Too few (good) features, and your model will not learn /

48 / 61

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

49 / 61

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

50 / 61

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

51 / 61

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

52 / 61

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

53 / 61

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

54 / 61

How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)

Zw(hj)

Parameters: θv|h wk

∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE:
c(hv)

c(h)
no closed form

55 / 61

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

56 / 61

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

57 / 61

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

58 / 61

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

59 / 61

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.
I Zw(hi) involves a sum over V terms.

I Neat trick (Goodman, 2001): class-based model!

60 / 61

References I

Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. Sparse additive generative models of text. In Proc. of ICML,
2011.

Joshua Goodman. Classes for fast maximum entropy training. In Proc. of ICASSP, 2001.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language models: A maximum entropy
approach. In Proc. of ICASSP, 1993.

Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce. Morgan and Claypool, 2010.

61 / 61

