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Where We Are

I Language models

I Text classification

I Linguistic analysis

I Generation
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Linguistic Analysis: Overview

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.
I In this class, I’ll start with abstract algorithms applicable to many problems.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I Most common now: supervised learning from annotated data
I Frontier: less supervision (semi-, un-, distant, . . . )
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Sequence Labeling

After text classification (V† → L), the next simplest type of output is a sequence
labeling.

〈x1, x2, . . . , x`〉 7→ 〈y1, y2, . . . , y`〉

Every word (or character) gets a label in L.
Example problems:

I part-of-speech tagging (Church, 1988)

I spelling correction (Kernighan et al., 1990)

I word alignment (Vogel et al., 1996)

I named-entity recognition (Bikel et al., 1999)

I compression (Conroy and O’Leary, 2001)
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The Simplest Sequence Labeler

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)
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The Simplest Sequence Labeler

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Sometimes this works!

We can do better when there are predictable relationships between Yi and Yi+1.
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Generative Sequence Labeling: Hidden Markov Models

p(x,y) = πy0

`+1∏
i=1

θxi|yi · γyi|yi−1

For each state/label y ∈ L:

I θ∗|y is the “emission” distribution

I γ∗|y is called the “transition” distribution

We saw this model before (Brown clustering). Differences:

I We used “z” before, now it’s “y”

I Before, we wanted to discover each yi (“unsupervised”)

I Now, we want to map x 7→ y, defined within a task (might be supervised or not)
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Graphical Reprsentation of Hidden Markov Models

x1 x2 x3 x4

!

y1 y2 y3 y4

γ

y0 y5

π x5

Note: handling of beginning and end of sequence is a bit different than before. From
here on, ignore last x since θ8|8 = 1.
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Factor Graph Representation of Hidden Markov Models

x1 x2 x3 x4

!

y1 y2 y3 y4
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A More General Form
Twice now, we’ve made the move from generative models based on repeated “rolls of
dice” to discriminative models based on feature representations.

I Language modeling

I Text classification

In the structured case, we can do the same thing.

argmax
y∈L`+1

p(y0)

`+1∏
i=1

p(xi, yi | yi−1)

= argmax
y∈L`+1

log p(y0) +

`+1∑
i=1

log p(xi, yi | yi−1)

= argmax
y∈L`+1

`+1∑
i=1

w · φ(xi, yi, yi−1)

In this case, each Yi “interacts” with Yi−1 and Yi+1 directly.
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Structured vs. Not

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

x

y1 y2 y3 y4

Each of these has an advantage over the other:

I The HMM lets the different labels “interact.”

I The simple unstructured classifier makes all of x available for every decision.
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A More Powerful Solution

Slightly more generally, define features of adjacent labels in context: φ(x, i, y, y′).

Features can depend on any words at all; this turns out not to affect asymptotic cost
of prediction!
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Local Pairwise Classifier

(ŷi, ŷi+1) = argmax
y,y′∈L

w · φ(x, i, y, y′)
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Local Pairwise Classifier

(ŷi, ŷi+1) = argmax
y,y′∈L

w · φ(x, i, y, y′)

x

y0 y1 y2 y3 y4

y1 y2 y3 y5y4

The problem is with disagreements: what if the Y1:2 prediction and the Y2:3 prediction
do not agree about Y2?
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Even More Powerful: “Global” Prediction

As with the pairwise model, define features of adjacent labeled words in context:
φ(x, i, y, y′)

“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)
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Even More Powerful: “Global” Prediction
As with the pairwise model, define features of adjacent labeled words in context:
φ(x, i, y, y′)
“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

x

y0 y1 y2 y3 y5y4

This is a fundamentally different kind of problem, demanding new:
I predicting (“decoding”) algorithms
I training algorithms (to be discussed later) 20 / 46



Prediction with HMMs

We’ll start with the classical HMM, then return later to the featurized case.

argmax
y∈L`+1

p(y0)

`+1∏
i=1

p(xi, yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?
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Prediction with HMMs

We’ll start with the classical HMM, then return later to the featurized case.

argmax
y∈L`+1

p(y0)

`+1∏
i=1

p(xi, yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?

Key: exploit the conditional independence assumptions:

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1
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Part-of-Speech Tagging Example

I suspect the present forecast is pessimistic .

noun • • • • • •
adj. • • • •
adv. •
verb • • • •
num. •
det. •
punc. •

With this very simple tag set, 78 = 5.7 million labelings.
(Even restricting to the possibilities above, 288 labelings.)
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Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each ŷi according to:

ŷi = argmax
y∈L

p(y | ŷi−1) · p(xi | y)

What’s wrong with these?
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Conditional Independence

We can get an exact solution in polynomial time!

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1

Given the adjacent labels to Yi, others do not matter.

Let’s start at the last position, ` . . .
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The End of the Sequence

x1 x2 . . . x`
y

y′

...

ylast

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

p(Y` = y | x,y1:(`−1)) = p(Y` = y | X` = x`, Y`−1 = y`−1, Y`+1 = 8′)

= γ8|y · θx`|y · γy|y`−1

The decision about Y` is a function of y`−1, x, and nothing else!
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High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.
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I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
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Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)
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Recurrence
First, think about the score of the best sequence.
Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

s`−1(y) = θx`|y ·max
y′∈L

γy|y′ · s`−2(y′)

s`−2(y) = θx`|y ·max
y′∈L

γy|y′ · s`−3(y′)

...

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y′)

...

s1(y) = θx1|y ·max
y′∈L

γy|y′ · πy′
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y

y′

...

ylast
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y)

y′ s1(y
′) s2(y

′)
...

ylast s1(y
last) s2(y

last)

si(y) = θxi|y ·max
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γy|y′ · si−1(y′)
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)
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