Natural Language Processing (CSE 517): Sequence Models

Noah Smith

© 2018

University of Washington nasmith@cs.washington.edu

April 27, 2018

<ロ > < 部 > < 言 > < 言 > こ > < つ へ (~ 1/60

• The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!

- The decision about Y_{ℓ} is a function of $y_{\ell-1}$, \boldsymbol{x} , and nothing else!
- If, for each value of y_{ℓ-1}, we knew the best y_{1:(ℓ-1)}, then picking y_ℓ (and y_{ℓ-1}) would be easy.

- The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- If, for each value of y_{ℓ-1}, we knew the best y_{1:(ℓ-1)}, then picking y_ℓ (and y_{ℓ-1}) would be easy.
- ► Idea: for each position *i*, calculate the score of the best label prefix $y_{1:i}$ ending in each possible value for Y_i .

- The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- ► If, for each value of y_{ℓ-1}, we knew the best y_{1:(ℓ-1)}, then picking y_ℓ (and y_{ℓ-1}) would be easy.
- ► Idea: for each position i, calculate the score of the best label prefix y_{1:i} ending in each possible value for Y_i.
- With a little bookkeeping, we can then trace backwards and recover the best label sequence.

First, think about the *score* of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $x_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcup | y} \cdot \theta_{x_{\ell} | y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y | y'} \cdot \boxed{s_{\ell-1}(y')}$$

First, think about the score of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $x_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcup|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$
$$s_{\ell-1}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')}$$

First, think about the score of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $x_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcup|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$
$$s_{\ell-1}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')}$$
$$s_{\ell-2}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-3}(y')}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
8 / 60

First, think about the *score* of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $x_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcup|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

$$s_{\ell-1}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')}$$

$$s_{\ell-2}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-3}(y')}$$

$$\vdots$$

$$s_{i}(y) = \theta_{x_{i}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')}$$

<ロ > < 部 > < 言 > < 言 > こ ? へ ? 9 / 60

First, think about the score of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $x_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcup|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

$$s_{\ell-1}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')}$$

$$s_{\ell-2}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-3}(y')}$$

$$\vdots$$

$$s_{i}(y) = \theta_{x_{i}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')}$$

$$\vdots$$

$$s_{1}(y) = \theta_{x_{1}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'}$$

10/60

	x_1	x_2	 x_ℓ
y			
y'			
:			
y^{last}			

	x_1	x_2	 x_ℓ
y	$s_1(y)$		
y'	$s_1(y')$		
:			
y^{last}	$s_1(y^{last})$		

$$s_1(y) = \theta_{x_1|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	x_1	x_2	 x_ℓ
y	$s_1(y)$	$s_2(y)$	
y'	$s_1(y')$	$s_2(y')$	
:			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	

$$s_i(y) = \theta_{x_i|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')}$$

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q (~ 13 / 60

	x_1	x_2	 x_ℓ
y	$s_1(y)$	$s_2(y)$	$s_\ell(y)$
y'	$s_1(y')$	$s_2(y')$	$s_\ell(y')$
÷			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	$s_{\ell}(y^{last})$

$$s_{\ell}(y) = \gamma_{\bigcup|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 14/60

<ロト < 部 > < 言 > < 言 > こ う < で 15/60

$$\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}} \gamma_{\bigcup | y} \cdot \theta_{x_{\ell} | y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y | y'} \cdot \boxed{s_{\ell-1}(y')}$$

$$\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$
$$= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y'')}}$$

$$\begin{aligned} \max_{y \in \mathcal{L}} s_{\ell}(y) &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y'')}} \\ &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \underbrace{\theta_{x_{\ell-2}|y''} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y''|y'''} \cdot \boxed{s_{\ell-3}(y''')}}_{y'' \in \mathcal{L}} \end{aligned}$$

4 ロ ト 4 回 ト 4 直 ト 4 直 ト 直 今 Q ()
18 / 60

Claim: $\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$ $\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$ $= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y'')}}$

$$= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \left[\theta_{x_{\ell-2}|y''} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y''|y'''} \cdot \boxed{\theta_{x_{\ell-2}|y''} \cdot \max_{y''' \in \mathcal{L}} \gamma_{y''|y'''} \cdot \boxed{s_{\ell-3}(y''')}} \right]$$

= max $\gamma_{\bigcirc i} \cdot \theta_{i+1} \cdot \gamma_{i+1} \cdot \theta_{i+1} \cdot \gamma_{i+1} \cdot \theta_{i+1} \cdot \gamma_{i+1} \cdot \theta_{i+1}$

$$= \max_{\boldsymbol{y} \in \mathcal{L}^{\ell+1}} \gamma_{\boldsymbol{y}_{\ell}} \cdot \boldsymbol{\theta}_{x_{\ell}|y_{\ell}} \cdot \gamma_{y_{\ell}|y_{\ell-1}} \cdot \boldsymbol{\theta}_{x_{\ell-1}|y_{\ell-1}} \cdot \gamma_{y_{\ell-1}|y_{\ell-2}}$$
$$\boldsymbol{\theta}_{x_{\ell-2}|y_{\ell-2}} \cdots \boldsymbol{\theta}_{x_{1}|y_{1}} \cdot \gamma_{y_{1}|y_{0}} \cdot \pi_{y_{0}}$$

<ロ> < (回) < (0) </p>

Claim:
$$\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$$
$$\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$
$$= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \underbrace{s_{\ell-2}(y'')}_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \underbrace{\theta_{x_{\ell-2}|y''} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \underbrace{s_{\ell-3}(y'')}_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \underbrace{\theta_{x_{\ell-2}|y''} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \underbrace{s_{\ell-3}(y'')}_{y \in \mathcal{L}^{\ell+1}} \gamma_{y_{\ell-2}} \cdot \underbrace{\theta_{x_{\ell-2}|y_{\ell-2}} \cdot \cdot \cdot \theta_{x_{\ell}|y_{\ell}} \cdot \gamma_{y_{\ell}|y_{\ell-1}} \cdot e_{x_{\ell-1}|y_{\ell-1}} \cdot \gamma_{y_{\ell-1}|y_{\ell-2}} \cdot e_{x_{\ell-2}|y_{\ell-2}} \cdot \cdot \cdot \cdot e_{x_{1}|y_{1}} \cdot \gamma_{y_{1}|y_{0}} \cdot \pi_{y_{0}}}$$

- The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- ► If, for each value of y_{ℓ-1}, we knew the best y_{1:(ℓ-1)}, then picking y_ℓ (and y_{ℓ-1}) would be easy.
- ► Idea: for each position i, calculate the score of the best label prefix y_{1:i} ending in each possible value for Y_i.
- With a little bookkeeping, we can then trace backwards and recover the best label sequence.

	x_1	x_2	 x_ℓ
y			
y'			
÷			
y^{last}			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	x_1	x_2	 x_ℓ
y	$s_1(y)$		
	$b_1(y)$		
y'	$s_1(y')$		
	$b_1(y')$		
:			
y^{last}	$s_1(y^{last})$		
	$b_1(y^{last})$		

$$s_1(y) = \theta_{x_1|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'}$$
$$b_1(y) = \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'}$$

・ロ・・母・・ヨ・・ヨ・ シック

23 / 60

	x_1	x_2	 x_ℓ
y	$s_1(y)$	$s_2(y)$	
	$b_1(y)$	$b_2(y)$	
y'	$s_1(y')$	$s_2(y')$	
	$b_1(y')$	$b_2(y')$	
:			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	
	$b_1(y^{last})$	$b_2(y^{last})$	

$$s_{i}(y) = \theta_{x_{i}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')}$$
$$b_{i}(y) = \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot s_{i-1}(y')$$

<ロ><一><日><日><日><日><日><日><日><日><日><日><日><10</p>

	x_1	x_2	 x_ℓ
y	$s_1(y)$	$s_2(y)$	$s_\ell(y)$
	$b_1(y)$	$b_2(y)$	$b_\ell(y)$
y'	$s_1(y')$	$s_2(y')$	$s_\ell(y')$
	$b_1(y')$	$b_2(y')$	$b_\ell(y')$
÷			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	$s_{\ell}(y^{last})$
	$b_1(y^{last})$	$b_2(y^{last})$	$b_\ell(y^{last})$

$$s_{\ell}(y) = \gamma_{\bigcup|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \left[s_{\ell-1}(y') \right]$$
$$b_{\ell}(y) = \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot s_{\ell-1}(y')$$

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆 > < 오</p>

Full Viterbi Procedure

Input: x, heta, γ , π

Output: \hat{y}

- 1. For $i \in \langle 1, \ldots, \ell \rangle$:
 - Solve for $s_i(*)$ and $b_i(*)$.
 - Special base case for i=1 to handle π
 - General recurrence for $i \in \langle 2, \dots, \ell 1 \rangle$
 - Special case for $i = \ell$ to handle stopping probability
- 2. $\hat{y}_{\ell} \leftarrow \operatorname*{argmax}_{y \in \mathcal{L}} s_{\ell}(y)$
- 3. For $i \in \langle \ell, \dots, 1 \rangle$:
 - $\blacktriangleright \hat{y}_{i-1} \leftarrow b(y_i)$

Full Viterbi Procedure

Input: $x, heta, \gamma, \pi$ Output: \hat{y}

- 1. For $i \in \langle 1, \ldots, \ell \rangle$:
 - Solve for $s_i(*)$ and $b_i(*)$.
 - Special base case for i = 1 to handle π (base case)
 - General recurrence for $i \in \langle 2, \dots, \ell 1 \rangle$

$$s_i(y) = \theta_{x_i|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot s_{i-1}(y')$$
$$b_i(y) = \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot s_{i-1}(y')$$

• Special case for $i = \ell$ to handle stopping probability

2.
$$\hat{y}_{\ell} \leftarrow \operatorname*{argmax}_{y \in \mathcal{L}} s_{\ell}(y)$$

3. For $i \in \langle \ell, \dots, 1 \rangle$:
 $\blacktriangleright \hat{y}_{i-1} \leftarrow b(y_i)$

Viterbi Asymptotics

Space: $O(|\mathcal{L}|\ell)$

Runtime: $O(|\mathcal{L}|^2 \ell)$

	x_1	x_2	 x_ℓ
y			
y'			
:			
y^{last}			

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の 4 で 28 / 60

▶ Instead of HMM parameters, we can use the featurized variant.

$$s_i(y) = \max_{y' \in \mathcal{L}} \exp\left(\mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y, y')\right) \cdot s_{i-1}(y')$$

More features may increase runtime, but asymptotic dependence on ℓ and $|\mathcal{L}|$ is the same.

- ► For this case and for the HMM case, taking logarithms is a good idea.
- ▶ Note that dependence on entirety of *x* doesn't affect asymptotics.

- ► Instead of HMM parameters, we can use the featurized variant.
- Viterbi instantiates an general algorithm called max-product variable elimination for inference along a chain of variables with pairwise links.
 - Applicable to Bayesian networks and Markov networks.

- ▶ Instead of HMM parameters, we can use the featurized variant.
- Viterbi instantiates an general algorithm called max-product variable elimination for inference along a chain of variables with pairwise links.
- ▶ Viterbi solves a special case of the "best path" problem.

- ▶ Instead of HMM parameters, we can use the featurized variant.
- Viterbi instantiates an general algorithm called max-product variable elimination for inference along a chain of variables with pairwise links.
- Viterbi solves a special case of the "best path" problem.
- ► Higher-order dependencies among *Y* are also possible.

$$s_i(y, y') = \max_{y'' \in \mathcal{L}} \exp\left(\mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y, y', y'')\right) \cdot s_{i-1}(y', y'')$$

- Instead of HMM parameters, we can use the featurized variant.
- Viterbi instantiates an general algorithm called max-product variable elimination for inference along a chain of variables with pairwise links.
- Viterbi solves a special case of the "best path" problem.
- ► Higher-order dependencies among *Y* are also possible.
- Dynamic programming algorithms.

- Instead of HMM parameters, we can use the featurized variant.
- Viterbi instantiates an general algorithm called max-product variable elimination for inference along a chain of variables with pairwise links.
- Viterbi solves a special case of the "best path" problem.
- ► Higher-order dependencies among *Y* are also possible.
- Dynamic programming algorithms.
- ► Weighted finite-state analysis.

Applications of Sequence Models

- part-of-speech tagging (Church, 1988)
- supersense tagging (Ciaramita and Altun, 2006)
- named-entity recognition (Bikel et al., 1999)
- multiword expressions (Schneider and Smith, 2015)
- base noun phrase chunking (Sha and Pereira, 2003)

Along the way, we'll briefly mention two ways to learn sequence models.

Parts of Speech

http://mentalfloss.com/article/65608/master-particulars-grammar-pop-culture-primer

36 / 60

Parts of Speech

- "Open classes": Nouns, verbs, adjectives, adverbs, numbers
- "Closed classes":
 - Modal verbs
 - Prepositions (on, to)
 - ▶ Particles (*off*, *up*)
 - Determiners (*the*, *some*)
 - Pronouns (she, they)
 - Conjunctions (and, or)

Parts of Speech in English: Decisions

Granularity decisions regarding:

- verb tenses, participles
- plural/singular for verbs, nouns
- proper nouns
- comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

- Existential there
- ► Infinitive marker to
- ▶ wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:

- Punctuation
- Compounds (Mark'll, someone's, gonna)

Penn Treebank: 45 tags, \sim 40 pages of guidelines (Marcus et al., 1993)

Parts of Speech in English: Decisions

Granularity decisions regarding:

- verb tenses, participles
- plural/singular for verbs, nouns
- proper nouns
- comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

- Existential there
- ► Infinitive marker to
- ► *wh* words (pronouns, adverbs, determiners, possessive *whose*) Interactions with tokenization:
 - Punctuation
 - Compounds (Mark'll, someone's, gonna)
 - Social media: hashtag, at-mention, discourse marker (*RT*), URL, emoticon, abbreviations, interjections, acronyms

Penn Treebank: 45 tags, ~40 pages of guidelines (Marcus et al., 1993) TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al., 2011) Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol

Example: Part-of-Speech Tagging

I know, right shake my head for your ikr smh he asked fir yo last name

you Facebook laugh out loud so he can add u on fb lololol

Example: Part-of-Speech Tagging

Why POS?

- ► Text-to-speech: *record*, *lead*, *protest*
- Lemmatization: $saw/V \rightarrow see$; $saw/N \rightarrow saw$
- Quick-and-dirty multiword expressions: (Adjective | Noun)* Noun (Justeson and Katz, 1995)
- Preprocessing for harder disambiguation problems:
 - ► The Georgia branch had taken on loan commitments
 - ► The average of interbank offered rates plummeted

Define a map $\mathcal{V} \to \mathcal{L}$.

Define a map $\mathcal{V} \to \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed, ...

<ロ > < 回 > < 直 > < 直 > < 直 > < 直 > < 三 > < 三 > < 45 / 60

Define a map $\mathcal{V} \to \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed, ...

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you're clever about handling unknown words.

Define a map $\mathcal{V} \to \mathcal{L}$.

How to pick the single POS for each word? E.g., raises, Fed, ...

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you're clever about handling unknown words.

All datasets have some errors; estimated upper bound for Penn Treebank is 98%.

Supervised Training of Hidden Markov Models

Given: annotated sequences $\langle\langle m{x}_1, m{y}_1,
angle, \dots, \langlem{x}_n, m{y}_n
angle
angle$

$$p(\boldsymbol{x}, \boldsymbol{y}) = \pi_{y_0} \prod_{i=1}^{\ell+1} \theta_{x_i|y_i} \cdot \gamma_{y_i|y_{i-1}}$$

Parameters: for each state/label $y \in \mathcal{L}$:

- π is the "start" distribution
- $\theta_{*|y}$ is the "emission" distribution
- $\gamma_{*|y}$ is called the "transition" distribution

Supervised Training of Hidden Markov Models

Given: annotated sequences $\langle\langle m{x}_1, m{y}_1,
angle, \dots, \langlem{x}_n, m{y}_n
angle
angle$

$$p(\boldsymbol{x}, \boldsymbol{y}) = \pi_{y_0} \prod_{i=1}^{\ell+1} \theta_{x_i|y_i} \cdot \gamma_{y_i|y_{i-1}}$$

Parameters: for each state/label $y \in \mathcal{L}$:

- π is the "start" distribution
- $\theta_{*|y}$ is the "emission" distribution
- $\gamma_{*|y}$ is called the "transition" distribution

Maximum likelihood estimate: count and normalize!

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

<ロ > < 部 > < 言 > < 言 > こ ジ < で 50 / 60

Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: \sim 97.5% (Toutanova et al., 2003); uses a feature-based model with:

- capitalization features
- spelling features
- name lists ("gazetteers")
- context words
- hand-crafted patterns

Parts of speech are a minimal *syntactic* representation.

Sequence labeling can get you a lightweight *semantic* representation, too.

A problem with a long history: word-sense disambiguation.

Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

► E.g., from a dictionary

Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

• E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

► E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al., 1993).

Example: box's Thirteen Synonym Sets, Eight Supersenses

- 1. box: a (usually rectangular) container; may have a lid. "he rummaged through a box of spare parts"
- 2. box/loge: private area in a theater or grandstand where a small group can watch the performance. "the royal box was empty"
- 3. box/boxful: the quantity contained in a box. "he gave her a box of chocolates"
- 4. corner/box: a predicament from which a skillful or graceful escape is impossible. "his lying got him into a tight corner"
- 5. box: a rectangular drawing. "the flowchart contained many boxes"
- 6. box/boxwood: evergreen shrubs or small trees
- 7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. "the umpire warned the batter to stay in the batter's box"
- 8. box/box seat: the driver's seat on a coach. "an armed guard sat in the box with the driver"
- 9. box: separate partitioned area in a public place for a few people. "the sentry stayed in his box to avoid the cold"
- 10. box: a blow with the hand (usually on the ear). "I gave him a good box on the ear"
- 11. box/package: put into a box. "box the gift, please"
- 12. box: hit with the fist. "I'll box your ears!"
- 13. box: engage in a boxing match.

Example: box's Thirteen Synonym Sets, Eight Supersenses

- 1. box: a (usually rectangular) container; may have a lid. "he rummaged through a box of spare parts" \rightsquigarrow N.ARTIFACT
- 2. box/loge: private area in a theater or grandstand where a small group can watch the performance. "the royal box was empty" \rightsquigarrow N.ARTIFACT
- 3. box/boxful: the quantity contained in a box. "he gave her a box of chocolates" \rightsquigarrow N.QUANTITY
- 4. corner/box: a predicament from which a skillful or graceful escape is impossible. "his lying got him into a tight corner" → N.STATE
- 5. box: a rectangular drawing. "the flowchart contained many boxes" \rightsquigarrow N.SHAPE
- 6. box/boxwood: evergreen shrubs or small trees \rightarrow N.PLANT
- 7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. "the umpire warned the batter to stay in the batter's box" → N.ARTIFACT
- 8. box/box seat: the driver's seat on a coach. "an armed guard sat in the box with the driver" \rightsquigarrow N.ARTIFACT
- 9. box: separate partitioned area in a public place for a few people. "the sentry stayed in his box to avoid the cold" \rightsquigarrow N.ARTIFACT
- 10. box: a blow with the hand (usually on the ear). "I gave him a good box on the ear" \rightarrow N.ACT
- 11. box/package: put into a box. "box the gift, please" \rightsquigarrow V.CONTACT
- 12. box: hit with the fist. "I'll box your ears!" \rightsquigarrow V.CONTACT
- 13. box: engage in a boxing match. \rightsquigarrow V.COMPETITION

References I

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what's in a name. *Machine learning*, 34(1–3):211–231, 1999.

Thorsten Brants. TnT – a statistical part-of-speech tagger. In Proc. of ANLP, 2000.

- Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In *Proc. of ANLP*, 1988.
- Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In *Proc. of EMNLP*, 2006.
- Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns in WordNet. In *Proc. of EMNLP*, 2003.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

- Kevin Gimpel, Nathan Schneider, Brendan O'Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A. Smith. Part-of-speech tagging for Twitter: Annotation, features, and experiments. In *Proc. of ACL*, 2011.
- John S. Justeson and Slava M. Katz. Technical terminology: Some linguistic properties and an algorithm for identification in text. *Natural Language Engineering*, 1:9–27, 1995.
- Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of English: the Penn treebank. *Computational Linguistics*, 19(2):313–330, 1993.
- G. A. Miller, C. Leacock, T. Randee, and R. Bunker. A semantic concordance. In Proc. of HLT, 1993.

- Nathan Schneider and Noah A. Smith. A corpus and model integrating multiword expressions and supersenses. In *Proc. of NAACL*, 2015.
- Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proc. of NAACL, 2003.
- Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-of-speech tagging with a cyclic dependency network. In *Proc. of NAACL*, 2003.