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High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.
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Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)
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Recurrence
First, think about the score of the best sequence.
Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = γ8|y · θx`|y ·max
y′∈L
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y′∈L

γy|y′ · s`−3(y′)

...

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y′)

...

s1(y) = θx1|y ·max
y′∈L

γy|y′ · πy′
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y

y′

...

ylast
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Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)
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High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x, and nothing else!

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` (and y`−1)
would be easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y

y′

...

ylast
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Full Viterbi Procedure

Input: x, θ, γ, π

Output: ŷ

1. For i ∈ 〈1, . . . , `〉:
I Solve for si(∗) and bi(∗).

I Special base case for i = 1 to handle π
I General recurrence for i ∈ 〈2, . . . , `− 1〉
I Special case for i = ` to handle stopping probability

2. ŷ` ← argmax
y∈L

s`(y)

3. For i ∈ 〈`, . . . , 1〉:
I ŷi−1 ← b(yi)
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Full Viterbi Procedure
Input: x, θ, γ, π

Output: ŷ

1. For i ∈ 〈1, . . . , `〉:
I Solve for si(∗) and bi(∗).

I Special base case for i = 1 to handle π (base case)
I General recurrence for i ∈ 〈2, . . . , `− 1〉

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y
′)

bi(y) = argmax
y′∈L

γy|y′ · si−1(y
′)

I Special case for i = ` to handle stopping probability

2. ŷ` ← argmax
y∈L

s`(y)

3. For i ∈ 〈`, . . . , 1〉:
I ŷi−1 ← b(yi)
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Viterbi Asymptotics

Space: O(|L|`)

Runtime: O(|L|2`)

x1 x2 . . . x`
y

y′

...

ylast
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Generalizing Viterbi

I Instead of HMM parameters, we can use the featurized variant.

si(y) = max
y′∈L

exp
(
w · φ(x, i, y, y′)

)
· si−1(y′)

More features may increase runtime, but asymptotic dependence on ` and |L| is
the same.

I For this case and for the HMM case, taking logarithms is a good idea.
I Note that dependence on entirety of x doesn’t affect asymptotics.

I Viterbi instantiates an general algorithm called max-product variable
elimination for inference along a chain of variables with pairwise links.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

I Dynamic programming algorithms.

I Weighted finite-state analysis.

29 / 60



Generalizing Viterbi

I Instead of HMM parameters, we can use the featurized variant.
I Viterbi instantiates an general algorithm called max-product variable

elimination for inference along a chain of variables with pairwise links.
I Applicable to Bayesian networks and Markov networks.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

I Dynamic programming algorithms.
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Applications of Sequence Models

I part-of-speech tagging (Church, 1988)

I supersense tagging (Ciaramita and Altun, 2006)

I named-entity recognition (Bikel et al., 1999)

I multiword expressions (Schneider and Smith, 2015)

I base noun phrase chunking (Sha and Pereira, 2003)

Along the way, we’ll briefly mention two ways to learn sequence models.
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Parts of Speech
http://mentalfloss.com/article/65608/master-particulars-grammar-pop-culture-primer
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Parts of Speech

I “Open classes”: Nouns, verbs, adjectives, adverbs, numbers
I “Closed classes”:

I Modal verbs
I Prepositions (on, to)
I Particles (off, up)
I Determiners (the, some)
I Pronouns (she, they)
I Conjunctions (and, or)
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Parts of Speech in English: Decisions
Granularity decisions regarding:

I verb tenses, participles

I plural/singular for verbs, nouns

I proper nouns

I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

I Existential there

I Infinitive marker to

I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:

I Punctuation

I Compounds (Mark’ll, someone’s, gonna)

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al., 1993)
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Parts of Speech in English: Decisions
Granularity decisions regarding:
I verb tenses, participles
I plural/singular for verbs, nouns
I proper nouns
I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:
I Existential there
I Infinitive marker to
I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:
I Punctuation
I Compounds (Mark’ll, someone’s, gonna)
I Social media: hashtag, at-mention, discourse marker (RT), URL, emoticon,

abbreviations, interjections, acronyms

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al., 1993)
TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al., 2011)
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Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name

you Facebook laugh out loud

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name
! G O V P D A N

interjection acronym pronoun verb prep. det. adj. noun

you Facebook laugh out loud

so he can add u on fb lololol
P O V V O P ∧ !

preposition proper noun
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Why POS?

I Text-to-speech: record, lead, protest

I Lemmatization: saw/V → see; saw/N → saw

I Quick-and-dirty multiword expressions: (Adjective | Noun)∗ Noun (Justeson and
Katz, 1995)

I Preprocessing for harder disambiguation problems:
I The Georgia branch had taken on loan commitments . . .
I The average of interbank offered rates plummeted . . .
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A Simple POS Tagger

Define a map V → L.
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Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about
handling unknown words.
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about
handling unknown words.

All datasets have some errors; estimated upper bound for Penn Treebank is 98%.
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Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) = πy0

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I π is the “start” distribution

I θ∗|y is the “emission” distribution

I γ∗|y is called the “transition” distribution
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Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) = πy0

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I π is the “start” distribution

I θ∗|y is the “emission” distribution

I γ∗|y is called the “transition” distribution

Maximum likelihood estimate: count and normalize!
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ∼97.5% (Toutanova et al., 2003); uses a feature-based model with:

I capitalization features

I spelling features

I name lists (“gazetteers”)

I context words

I hand-crafted patterns
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Other Labels

Parts of speech are a minimal syntactic representation.

Sequence labeling can get you a lightweight semantic representation, too.
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Supersenses

A problem with a long history: word-sense disambiguation.
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Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al.,
1993).
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Example: box’s Thirteen Synonym Sets, Eight Supersenses

1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.

57 / 60



Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”  

n.artifact

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”  n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”  n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”  n.state

5. box: a rectangular drawing. “the flowchart contained many boxes”  n.shape

6. box/boxwood: evergreen shrubs or small trees  n.plant

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”  n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”  
n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”  n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”  n.act

11. box/package: put into a box. “box the gift, please”  v.contact

12. box: hit with the fist. “I’ll box your ears!”  v.contact

13. box: engage in a boxing match.  v.competition
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