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Bridging the Gap between Language and the World

In order to link NL to a knowledge base, we might want to design a formal way to
represent meaning.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is true, or answer a
question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”
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Bridging the Gap between Language and the World
In order to link NL to a knowledge base, we might want to design a formal way to
represent meaning.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is true, or answer a
question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

Eventually (but not today):

I deal with non-literal meanings

I expressiveness across a wide range of subject matter
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A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage, Din Tai Fung,
Banana Leaf, American, Chinese, Thai

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy; Alice, Bob, and
Charles are human

I Relations: Schultzy’s serves American, Din Tai Fung serves Chinese, and Banana
Leaf serves Thai

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?
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A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage, Din Tai Fung,
Banana Leaf, American, Chinese, Thai
a, b, c, d, ss, dtf , bl , am, ch, th

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy; Alice, Bob, and
Charles are human
Longwait = {dtf },Noisy = {ss},Human = {a, b, c}

I Relations: Schultzy’s serves American, Din Tai Fung serves Chinese, and Banana
Leaf serves Thai
Serves = {(ss, am), (dtf , ch), (bl , th)},Likes = {(a, ss), (a, dtf ), . . .}

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?
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A Quick Tour of First-Order Logic

I Term: a constant (ss) or a variable
I Formula: defined inductively . . .

I If R is an n-ary relation and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula.
I If φ is a formula, then its negation, ¬φ, is a formula.
I If φ and ψ are formulas, then binary logical connectives can be used to create

formulas:
I φ ∧ ψ
I φ ∨ ψ
I φ⇒ ψ
I φ⊕ ψ

I If φ is a formula and v is a variable, then quantifiers can be used to create formulas:
I Universal quantifier: ∀v, φ
I Existential quantifier: ∃v, φ

Note: Leaving out functions, because we don’t need them in a single lecture on FOL
for NL.
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Translating Between FOL and NL

1. Schultzy’s is not loud

2. Some human likes Chinese

3. If a person likes Thai, then they aren’t friends with Donald

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
5. ∀x, ∃y,¬Likes(x, y)
6. ∃y,∀x,¬Likes(x, y)
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Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)
2. Some human likes Chinese ∃x,Human(x ) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x ) ∧ Likes(x, th) ⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)
Everybody has something they don’t like.

6. ∃y,∀x,¬Likes(x, y)
There exists something that nobody likes.
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Logical Semantics
(Montague, 1970)

The denotation of a NL sentence is the set of conditions that must hold in the (model)
world for the sentence to be true.

Every restaurant has a long wait or Adrian doesn’t like it.

is true if and only if

∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))

is true.

This is sometimes called the logical form of the NL sentence.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

I.e., semantics is derived from syntax.

We need a way to express semantics of phrases, and compose them together!
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.
I It can be reduced by substituting ψ in for every instance of v in φ.
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.
I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
[[λx.λy.Friends(x, y)](b)](a) reduces to [λy.Friends(b, y)](a), which reduces to
Friends(b, a)
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Semantic Attachments to CFG

I NNP → Adrian {a}
I VBZ → likes {λf.λy.∀xf(x) ⇒ Likes(y, x)}
I JJ → expensive {λx.Expensive(x)}
I NNS → restaurants {λx.Restaurant(x)}
I NP → NNP {NNP.sem}
I NP → JJ NNS {λx.JJ.sem(x) ∧ NNS.sem(x)}
I VP → VBZ NP {VBZ.sem(NP.sem)}
I S → NP VP {VP.sem(NP.sem)}
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Example

S

NP

NNP

Adrian

VP

VBZ

likes

NP

JJ

expensive

NNS

restaurants
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.JJ.sem(v) ∧ NNS.sem(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants

λv.

λz.Expensive(z)︸ ︷︷ ︸
JJ.sem

 (v) ∧

λw.Restaurant(w)︸ ︷︷ ︸
NNS.sem

 (v)
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Example

...

VP : VBZ.sem(NP.sem)

VBZ : λf.λy.∀xf(x) ⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurants
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Example

...

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

VBZ : λf.λy.∀xf(x) ⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurantsλf.λy.∀xf(x) ⇒ Likes(y, x)︸ ︷︷ ︸
VBZ.sem

λv.Expensive(v) ∧ Restaurant(v)︸ ︷︷ ︸
NP.sem


λy.∀x [λv.Expensive(v) ∧ Restaurant(v)] (x) ⇒ Likes(y, x)

λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants
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Example

S : VP.sem(NP.sem)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants
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Example

S : ∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(a, x)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants

λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)︸ ︷︷ ︸
VP.sem

 a︸︷︷︸
NP.sem


∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(a, x)
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Graph-Based Representations
Abstract Meaning Representation (Banarescu et al., 2013)

want-01

boy

visit-01

city

name

“New” “York” “City”

ARG0

ARG1

ARG0
ARG1

name

op1 op2 op3

“The boy wants to visit New York City.”
Designed for (1) annotation-ability and (2) eventual use in machine translation.

37 / 54



Combinatory Categorial Grammar
(Steedman, 2000)

CCG is a grammatical formalism that is well-suited for tying together syntax and
semantics.

Formally, it is more powerful than CFG—it can represent some of the context-sensitive
languages (which we do not have time to define formally).
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CCG Types

Instead of the “N” of CFGs, CCGs can have an infinitely large set of structured
categories (called types).

I Primitive types: typically S, NP, N, and maybe more
I Complex types, built with “slashes,” for example:

I S/NP is “an S, except that it lacks an NP to the right”
I S\NP is “an S, except that it lacks an NP to its left”
I (S\NP)/NP is “an S, except that it lacks an NP to its right, and its left”

You can think of complex types as functions, e.g., S/NP maps NPs to Ss.
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CCG Combinators

Instead of the production rules of CFGs, CCGs have a very small set of generic
combinators that tell us how we can put types together.

Convention writes the rule differently from CFG: X Y ⇒ Z means that X and Y
combine to form a Z (the “parent” in the tree).
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

dog
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

N/N

yellow

N

dog
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

bit

NP

John
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Conjunction Combinator

X and X ⇒ X

NP

NP

cats

and NP

dogs
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Conjunction Combinator

X and X ⇒ X

S

NP

John

S\NP

S\NP

(S\NP)/NP

ate

NP

anchovies

and S\NP

(S\NP)/NP

drank

NP

beer
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Conjunction Combinator

X and X ⇒ X

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

(S\NP)/NP

bit

and (S\NP)/NP

infected

NP

John
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Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward (Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/NP

(S\NP)/(S\NP)

would

(S\NP)/NP

prefer

NP

olives
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Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward (Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/(S\NP)

would

S \NP

(S\NP)/NP

prefer

NP

olives
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Type-Raising Combinator
Forward (X ⇒ Y/(Y \X)) and backward (X ⇒ Y \(Y/X))

S

S/NP

S/NP

S/(S\NP)

NP

I

(S\NP)/NP

love

and S/NP

S/(S\NP)

NP

Karen

(S\NP)/NP

hates

NP

chocolate
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Back to Semantics

Each combinator also tells us what to do with the semantic attachments.

I Forward application: X/Y : f Y : g ⇒ X : f(g)

I Forward composition: X/Y : f Y/Z : g ⇒ X/Z : λx.f(g(x))

I Forward type-raising: X : g ⇒ Y/(Y \X) : λf.f(g)
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CCG Lexicon

Most of the work is done in the lexicon!

Syntactic and semantic information is much more formal here.

I Slash categories define where all the syntactic arguments are expected to be

I λ-expressions define how the expected arguments get “used” to build up a FOL
expression

Extensive discussion: Carpenter (1997)
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Some Topics We Don’t Have Time For

I Tasks, evaluations, annotated datasets (e.g., CCGbank, Hockenmaier and
Steedman, 2007)

I Learning for semantic parsing (Zettlemoyer and Collins, 2005) and CCG parsing
(Clark and Curran, 2004a)

I Using CCG to represent other kinds of semantics (e.g., predicate-argument
structures; Lewis and Steedman, 2014)

I Integrating continuous representations in semantic parsing (Lewis and Steedman,
2013; Krishnamurthy and Mitchell, 2013)

I Supertagging (Clark and Curran, 2004b) and making semantic parsing efficient
(Lewis and Steedman, 2014)

I Grounding meaning in visual (or other perceptual) experience

53 / 54



References I

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract meaning representation for sembanking. In
Proc. of the Linguistic Annotation Workshop and Interoperability with Discourse, 2013.

Bob Carpenter. Type-logical semantics. MIT Press, 1997.

Stephen Clark and James R. Curran. Parsing the WSJ using CCG and log-linear models. In Proc. of ACL, 2004a.

Stephen Clark and James R. Curran. The importance of supertagging for wide-coverage CCG parsing. In Proc.
of COLING, 2004b.

Julia Hockenmaier and Mark Steedman. CCGbank: a corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. Computational Linguistics, 33(3):355–396, 2007.

Jayant Krishnamurthy and Tom Mitchell. Vector space semantic parsing: A framework for compositional vector
space models. 2013.

Mike Lewis and Mark Steedman. Combining distributional and logical semantics. Transactions of the
Association for Computational Linguistics, 1:179–192, 2013.

Mike Lewis and Mark Steedman. A* CCG parsing with a supertag-factored model. In Proc. of EMNLP, 2014.

Richard Montague. Universal grammar. Theoria, 36:373–398, 1970.

Mark Steedman. The Syntactic Process. MIT Press, 2000.

Luke Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured classification with
probabilistic categorial grammars. In Proc. of UAI, 2005.

54 / 54


	References

