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Project

Include control characters in vocabulary, so |V| =136,755.

Extension on the dry run: Wednesday, May 9.
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Mid-Quarter Review: Results

Thank you!

Going well:

I Lectures, examples, explanations of math, slides, engagement of the class,
readings

I Unified framework, connections among concepts, up-to-date content, topic
coverage

Changes to make:

I Posting slides before lecture

I Expectations on project
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Sequence Models (Quick Review)

Models:

I Hidden Markov X

I “φ(x, i, y, y′)” X

Algorithm: Viterbi X

Applications:

I part-of-speech tagging (Church, 1988) X

I supersense tagging (Ciaramita and Altun, 2006)

I named-entity recognition (Bikel et al., 1999)

I multiword expressions (Schneider and Smith, 2015)

I base noun phrase chunking (Sha and Pereira, 2003)

Learning:

I Supervised parameter estimation for HMMs X
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Supersenses

A problem with a long history: word-sense disambiguation.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al.,
1993).
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Example: box’s Thirteen Synonym Sets, Eight Supersenses

1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.
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Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”  

n.artifact

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”  n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”  n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”  n.state

5. box: a rectangular drawing. “the flowchart contained many boxes”  n.shape

6. box/boxwood: evergreen shrubs or small trees  n.plant

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”  n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”  
n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”  n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”  n.act

11. box/package: put into a box. “box the gift, please”  v.contact

12. box: hit with the fist. “I’ll box your ears!”  v.contact

13. box: engage in a boxing match.  v.competition
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Supersense Tagging Example

Clara Harris , one of the guests in the
n.person n.person

box , stood up and demanded
n.artifact v.motion v.communication

water .
n.substance
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Ciaramita and Altun’s Approach

Features at each position in the sentence:

I word

I “first sense” from WordNet (also conjoined with word)

I POS, coarse POS

I shape (case, punctuation symbols, etc.)

I previous label

All of these fit into “φ(x, i, y, y′).”
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Supervised Training of Sequence Models (Discriminative)

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

Assume:

predict(x) = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

= argmax
y∈L`+1

w ·
`+1∑
i=1

φ(x, i, yi, yi−1)

= argmax
y∈L`+1

w ·Φ(x,y)

Estimate: w
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Perceptron

Perceptron algorithm for classification:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

it ← argmax
`∈L

w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀
it)− φ(xit , `it)

)
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Structured Perceptron
Collins (2002)

Perceptron algorithm for classification structured prediction:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ŷit ← argmax

y∈L`+1

w ·Φ(xit ,y)

I w← w − α
(
Φ(xit , ŷit)−Φ(xit ,yit)

)
This can be viewed as stochastic subgradient descent on the structured hinge loss:

n∑
i=1

max
y∈L`i+1

w ·Φ(xi,y)︸ ︷︷ ︸
fear

−w ·Φ(xi,yi)︸ ︷︷ ︸
hope
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Back to Supersenses

Clara Harris , one of the guests in the
n.person n.person

box , stood up and demanded
n.artifact v.motion v.communication

water .
n.substance

Shouldn’t Clara Harris and stood up be respectively “grouped”?
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Segmentations

Segmentation:

I Input: x = 〈x1, x2, . . . , x`〉
I Output:

〈
x1:`1 ,x(1+`1):(`1+`2),x(1+`1+`2):(`1+`2+`3), . . . ,x(1+

∑m−1
i=1 `i):

∑m
i=1 `i

〉
where ` =

∑m
i=1 `i.

Application: word segmentation for writing systems without whitespace.
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Segmentations

Segmentation:

I Input: x = 〈x1, x2, . . . , x`〉
I Output:

〈
x1:`1 ,x(1+`1):(`1+`2),x(1+`1+`2):(`1+`2+`3), . . . ,x(1+

∑m−1
i=1 `i):

∑m
i=1 `i

〉
where ` =

∑m
i=1 `i.

Application: word segmentation for writing systems without whitespace.

With arbitrarily long segments, this does not look like a job for φ(x, i, y, y′)!
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Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B (“beginning of new segment”), I (“inside segment”)

I `1 = 4, `2 = 3, `3 = 1, `4 = 2 −→ 〈B, I, I, I, B, I, I, B, B, I〉

Three labels: B, I, O (“outside segment”)

Five labels: B, I, O, E (“end of segment”), S (“singleton”)
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Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B (“beginning of new segment”), I (“inside segment”)

I `1 = 4, `2 = 3, `3 = 1, `4 = 2 −→ 〈B, I, I, I, B, I, I, B, B, I〉

Three labels: B, I, O (“outside segment”)

Five labels: B, I, O, E (“end of segment”), S (“singleton”)

Bonus: combine these with a label to get labeled segmentation!
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Named Entity Recognition as Segmentation and Labeling

An older and narrower subset of supersenses used in information extraction:

I person,

I location,

I organization,

I geopolitical entity,

I . . . and perhaps domain-specific additions.
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Named Entity Recognition

With Commander Chris Ferguson at the helm ,
person

Atlantis touched down at Kennedy Space Center .
spacecraft location
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Named Entity Recognition

With Commander Chris Ferguson at the helm ,
person

O B I I O O O O

Atlantis touched down at Kennedy Space Center .
spacecraft location

B O O O B I I O
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Named Entity Recognition: Evaluation

1 2 3 4 5 6 7 8 9

x = Britain sent warships across the English Channel Monday to
y = B O O O O B I B O
y′ = O O O O O B I B O

10 11 12 13 14 15 16 17 18 19

rescue Britons stranded by Eyjafjallajökull ’s volcanic ash cloud .
O B O O B O O O O O
O B O O B O O O O O
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Segmentation Evaluation

Typically: precision, recall, and F1.
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Multiword Expressions
Schneider et al. (2014b)

I MW compounds: red tape, motion picture, daddy longlegs, Bayes net, hot air balloon, skinny dip, trash
talk

I verb-particle: pick up, dry out, take over, cut short
I verb-preposition: refer to, depend on, look for, prevent from
I verb-noun(-preposition): pay attention (to), go bananas, lose it, break a leg, make the most of
I support verb: make decisions, take breaks, take pictures, have fun, perform surgery
I other phrasal verb: put up with, miss out (on), get rid of, look forward to, run amok, cry foul, add insult

to injury, make off with
I PP modifier: above board, beyond the pale, under the weather, at all, from time to time, in the nick of

time
I coordinated phrase: cut and dry, more or less, up and leave
I conjunction/connective: as well as, let alone, in spite of, on the face of it/on its face
I semi-fixed VP: smack <one>’s lips, pick up where <one> left off, go over <thing> with a

fine-tooth(ed) comb, take <one>’s time, draw <oneself> up to <one>’s full height
I fixed phrase: easy as pie, scared to death, go to hell in a handbasket, bring home the bacon, leave of

absence, sense of humor
I phatic: You’re welcome. Me neither!
I proverb: Beggars can’t be choosers. The early bird gets the worm. To each his own. One man’s

<thing1> is another man’s <thing2>.
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Sequence Labeling with Nesting
Schneider et al. (2014a)

he was willing to budge1 a2 little2 on1 the price
O O O O B b ı̄ Ī O O

which means4 a43 lot43 to4 me4 .

O B Ĩ Ī Ĩ Ĩ O

Strong (subscript) vs. weak (superscript) MWEs.

One level of nesting, plus strong/weak distinction, can be handled with an eight-tag
scheme.
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Back to Syntax

Base noun phrase chunking:

[He]NP reckons [the current account deficit]NP will narrow to
[only $ 1.8 billion]NP in [September]NP

(What is a base noun phrase?)

“Chunking” used generically includes base verb and prepositional phrases, too.

Sequence labeling with BIO tags and features can be applied to this problem (Sha and
Pereira, 2003).
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Remarks

Sequence models are extremely useful:

I syntax: part-of-speech tags, base noun phrase chunking

I semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).
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Remarks

Sequence models are extremely useful:

I syntax: part-of-speech tags, base noun phrase chunking

I semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).

Issues to be aware of:

I Supervised data for these problems is not cheap.

I Performance always suffers when you test on a different style, genre, dialect, etc.
than you trained on.

I Runtime depends on the size of L and the number of consecutive labels that
features can depend on.
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