# Natural Language Processing (CSE 517): Sequence Models

Noah Smith

© 2018

University of Washington nasmith@cs.washington.edu

May 2, 2018

## Project

Include control characters in vocabulary, so  $|\mathcal{V}|$  =136,755.

Extension on the dry run: Wednesday, May 9.

### Mid-Quarter Review: Results

#### Thank you!

#### Going well:

- ► Lectures, examples, explanations of math, slides, engagement of the class, readings
- Unified framework, connections among concepts, up-to-date content, topic coverage

#### Changes to make:

- Posting slides before lecture
- ► Expectations on project

# Sequence Models (Quick Review)

#### Models:

- ► Hidden Markov
- $\blacktriangleright$  " $\phi(x,i,y,y')$ "
- Algorithm: Viterbi

#### Applications:

- part-of-speech tagging (Church, 1988)supersense tagging (Ciaramita and Altun, 2006)
- supersonse tagging (claratimes and vittari, 20
- ▶ named-entity recognition (Bikel et al., 1999)
- multiword expressions (Schneider and Smith, 2015)
- base noun phrase chunking (Sha and Pereira, 2003)

### Learning:

► Supervised parameter estimation for HMMs

A problem with a long history: word-sense disambiguation.

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

► E.g., from a dictionary

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

► E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

► WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

► E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called WordNet to define 41 semantic classes for words.

► WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al., 1993).

## Example: box's Thirteen Synonym Sets, Eight Supersenses

- 1. box: a (usually rectangular) container; may have a lid. "he rummaged through a box of spare parts"
- 2. box/loge: private area in a theater or grandstand where a small group can watch the performance. "the royal box was empty"
- 3. box/boxful: the quantity contained in a box. "he gave her a box of chocolates"
- 4. corner/box: a predicament from which a skillful or graceful escape is impossible. "his lying got him into a tight corner"
- 5. box: a rectangular drawing. "the flowchart contained many boxes"
- 6. box/boxwood: evergreen shrubs or small trees
- 7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. "the umpire warned the batter to stay in the batter's box"
- 8. box/box seat: the driver's seat on a coach. "an armed guard sat in the box with the driver"
- 9. box: separate partitioned area in a public place for a few people. "the sentry stayed in his box to avoid the cold"
- 10. box: a blow with the hand (usually on the ear). "I gave him a good box on the ear"
- 11. box/package: put into a box. "box the gift, please"
- 12. box: hit with the fist. "I'll box your ears!"
- 13. box: engage in a boxing match.

## Example: box's Thirteen Synonym Sets, Eight Supersenses

- 1. box: a (usually rectangular) container; may have a lid. "he rummaged through a box of spare parts"  $\leadsto$  N.ARTIFACT
- 2. box/loge: private area in a theater or grandstand where a small group can watch the performance. "the royal box was empty" ->> N.ARTIFACT
- 3. box/boxful: the quantity contained in a box. "he gave her a box of chocolates" --> N.QUANTITY
- 4. corner/box: a predicament from which a skillful or graceful escape is impossible. "his lying got him into a tight corner" ->> N.STATE
- 5. box: a rectangular drawing. "the flowchart contained many boxes" ->> N.SHAPE
- 6. box/boxwood: evergreen shrubs or small trees → N.PLANT
- 7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are positioned. "the umpire warned the batter to stay in the batter's box" NARTIFACT
- 8. box/box seat: the driver's seat on a coach. "an armed guard sat in the box with the driver"  $\leadsto$  N.ARTIFACT
- 9. box: separate partitioned area in a public place for a few people. "the sentry stayed in his box to avoid the cold" → N.ARTIFACT
- 10. box: a blow with the hand (usually on the ear). "I gave him a good box on the ear" \sim N.ACT
- 11. box/package: put into a box. "box the gift, please" \sim V.CONTACT
- 12. box: hit with the fist. "I'll box your ears!" → V.CONTACT
- 13. box: engage in a boxing match. ~ V.COMPETITION

## Supersense Tagging Example

```
Clara Harris , one of the guests in the N.PERSON N.PERSON
```

```
box , stood up and demanded N.ARTIFACT V.MOTION V.COMMUNICATION
```

```
water ...
N.SUBSTANCE
```

## Ciaramita and Altun's Approach

#### Features at each position in the sentence:

- word
- "first sense" from WordNet (also conjoined with word)
- ► POS, coarse POS
- ► shape (case, punctuation symbols, etc.)
- previous label

All of these fit into " $\phi(x, i, y, y')$ ."

# Supervised Training of Sequence Models (Discriminative)

Given: annotated sequences  $\langle \langle \boldsymbol{x}_1, \boldsymbol{y}_1, \rangle, \dots, \langle \boldsymbol{x}_n, \boldsymbol{y}_n \rangle \rangle$ 

Assume:

$$\operatorname{predict}(\boldsymbol{x}) = \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \sum_{i=1}^{\ell+1} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$
$$= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \mathbf{w} \cdot \sum_{i=1}^{\ell+1} \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$
$$= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \mathbf{w} \cdot \boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{y})$$

Estimate: w

### Perceptron

#### Perceptron algorithm for classification:

- ▶ For  $t \in \{1, ..., T\}$ :
  - ▶ Pick  $i_t$  uniformly at random from  $\{1, ..., n\}$ .

  - $\qquad \qquad \mathbf{w} \leftarrow \mathbf{w} \alpha \left( \phi(\boldsymbol{x}_{i_t}, \hat{\ell}_{i_t}) \phi(\boldsymbol{x}_{i_t}, \ell_{i_t}) \right)$

## Structured Perceptron

Collins (2002)

Perceptron algorithm for classification structured prediction:

- ▶ For  $t \in \{1, ..., T\}$ :
  - ▶ Pick  $i_t$  uniformly at random from  $\{1, ..., n\}$ .
  - $\qquad \qquad \hat{\boldsymbol{y}}_{i_t} \leftarrow \operatorname*{argmax}_{\boldsymbol{y} \in \mathcal{L}^{\ell+1}} \mathbf{w} \cdot \boldsymbol{\Phi}(\boldsymbol{x}_{i_t}, \boldsymbol{y})$
  - $\qquad \qquad \mathbf{w} \leftarrow \mathbf{w} \alpha \left( \mathbf{\Phi}(\boldsymbol{x}_{i_t}, \boldsymbol{\hat{y}}_{i_t}) \mathbf{\Phi}(\boldsymbol{x}_{i_t}, \boldsymbol{y}_{i_t}) \right)$

This can be viewed as stochastic subgradient descent on the structured hinge loss:

$$\sum_{i=1}^n \underbrace{\max_{oldsymbol{y} \in \mathcal{L}^{\ell_i+1}} \mathbf{w} \cdot oldsymbol{\Phi}(oldsymbol{x}_i, oldsymbol{y})}_{ ext{fear}} - \underbrace{\mathbf{w} \cdot oldsymbol{\Phi}(oldsymbol{x}_i, oldsymbol{y}_i)}_{ ext{hope}}$$

## Back to Supersenses

```
Clara
       Harris
                , one of the
                                guests
                                              the
      N.PERSON
                                N.PERSON
                                           demanded
     box
                stood
                          up
                                  and
  N. ARTIFACT
                       V.MOTION
                                       V.COMMUNICATION
     water
  N.SUBSTANCE
```

Shouldn't Clara Harris and stood up be respectively "grouped"?

## Segmentations

#### Segmentation:

- ▶ Input:  $\boldsymbol{x} = \langle x_1, x_2, \dots, x_\ell \rangle$

where  $\ell = \sum_{i=1}^{m} \ell_i$ .

Application: word segmentation for writing systems without whitespace.

## Segmentations

#### Segmentation:

- ▶ Input:  $\boldsymbol{x} = \langle x_1, x_2, \dots, x_\ell \rangle$

where  $\ell = \sum_{i=1}^{m} \ell_i$ .

Application: word segmentation for writing systems without whitespace.

With arbitrarily long segments, this does not look like a job for  $\phi(x, i, y, y')$ !

## Segmentation as Sequence Labeling

Ramshaw and Marcus (1995)

Two labels: B ("beginning of new segment"), I ("inside segment")

$$\blacktriangleright \ \ell_1=4, \ell_2=3, \ell_3=1, \ell_4=2 \longrightarrow \langle \mathsf{B}, \mathsf{I}, \mathsf{I}, \mathsf{I}, \mathsf{B}, \mathsf{I}, \mathsf{I}, \mathsf{B}, \mathsf{B}, \mathsf{I} \rangle$$

Three labels: B, I, O ("outside segment")

Five labels: B, I, O, E ("end of segment"), S ("singleton")

# Segmentation as Sequence Labeling

Ramshaw and Marcus (1995)

Two labels: B ("beginning of new segment"), I ("inside segment")

$$\blacktriangleright \ \ell_1=4, \ell_2=3, \ell_3=1, \ell_4=2 \longrightarrow \langle \mathsf{B}, \mathsf{I}, \mathsf{I}, \mathsf{I}, \mathsf{B}, \mathsf{I}, \mathsf{I}, \mathsf{B}, \mathsf{B}, \mathsf{I} \rangle$$

Three labels: B, I, O ("outside segment")

Five labels: B, I, O, E ("end of segment"), S ("singleton")

Bonus: combine these with a label to get labeled segmentation!

## Named Entity Recognition as Segmentation and Labeling

An older and narrower subset of supersenses used in information extraction:

- person,
- location,
- organization,
- ▶ geopolitical entity,
- ...and perhaps domain-specific additions.

### Named Entity Recognition

With  $\underline{\text{Commander Chris Ferguson}}$  at the helm ,  $\underline{\text{person}}$ 

←□ → ←□ → ← □ → ← □ → −

### Named Entity Recognition





### Named Entity Recognition: Evaluation

```
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19

      rescue Britons stranded by Eyjafjallajökull 's volcanic ash cloud .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      <td
```

## Segmentation Evaluation

Typically: precision, recall, and  $F_1$ .

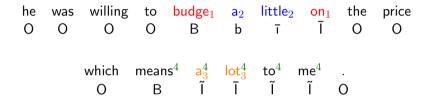
### Multiword Expressions

#### Schneider et al. (2014b)

- ▶ MW compounds: red tape, motion picture, daddy longlegs, Bayes net, hot air balloon, skinny dip, trash talk
- ▶ verb-particle: pick up, dry out, take over, cut short
- verb-preposition: refer to, depend on, look for, prevent from
- ▶ verb-noun(-preposition): pay attention (to), go bananas, lose it, break a leg, make the most of
- ▶ support verb: make decisions, take breaks, take pictures, have fun, perform surgery
- other phrasal verb: put up with, miss out (on), get rid of, look forward to, run amok, cry foul, add insult to injury, make off with
- ▶ PP modifier: above board, beyond the pale, under the weather, at all, from time to time, in the nick of time
- coordinated phrase: cut and dry, more or less, up and leave
- **conjunction/connective:** as well as, let alone, in spite of, on the face of it/on its face
- semi-fixed VP: smack <one>'s lips, pick up where <one> left off, go over <thing> with a fine-tooth(ed) comb, take <one>'s time, draw <oneself> up to <one>'s full height
- fixed phrase: easy as pie, scared to death, go to hell in a handbasket, bring home the bacon, leave of absence, sense of humor
- phatic: You're welcome. Me neither!
- ▶ proverb: Beggars can't be choosers. The early bird gets the worm. To each his own. One man's <thing₁> is another man's <thing₂>.

## Sequence Labeling with Nesting

Schneider et al. (2014a)



Strong (subscript) vs. weak (superscript) MWEs.

One level of nesting, plus strong/weak distinction, can be handled with an eight-tag scheme.

## Back to Syntax

Base noun phrase chunking:

[He]<sub>NP</sub> reckons [the current account deficit]<sub>NP</sub> will narrow to [only \$ 1.8 billion]<sub>NP</sub> in [September]<sub>NP</sub>

(What is a base noun phrase?)

"Chunking" used generically includes base verb and prepositional phrases, too.

Sequence labeling with BIO tags and features can be applied to this problem (Sha and Pereira, 2003).

#### Remarks

#### Sequence models are extremely useful:

- syntax: part-of-speech tags, base noun phrase chunking
- > semantics: supersense tags, named entity recognition, multiword expressions

All of these are called "shallow" methods (why?).

#### Remarks

#### Sequence models are extremely useful:

- syntax: part-of-speech tags, base noun phrase chunking
- ▶ semantics: supersense tags, named entity recognition, multiword expressions

All of these are called "shallow" methods (why?).

#### Issues to be aware of:

- Supervised data for these problems is not cheap.
- ▶ Performance always suffers when you test on a different style, genre, dialect, etc. than you trained on.
- ightharpoonup Runtime depends on the size of  $\mathcal L$  and the number of consecutive labels that features can depend on.

#### References I

- Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what's in a name. *Machine learning*, 34(1–3):211–231, 1999.
- Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In *Proc. of ANLP*, 1988.
- Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In *Proc. of EMNLP*, 2006.
- Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns in WordNet. In *Proc. of EMNLP*, 2003.
- Michael Collins. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In *Proc. of EMNLP*, 2002.
- Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
- G. A. Miller, C. Leacock, T. Randee, and R. Bunker. A semantic concordance. In Proc. of HLT, 1993.
- Lance A Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based learning, 1995. URL http://arxiv.org/pdf/cmp-lg/9505040.pdf.
- Nathan Schneider and Noah A. Smith. A corpus and model integrating multiword expressions and supersenses. In *Proc. of NAACL*, 2015.
- Nathan Schneider, Emily Danchik, Chris Dyer, and Noah A. Smith. Discriminative lexical semantic segmentation with gaps: Running the MWE gamut. *Transactions of the Association for Computational Linguistics*, 2:193–206, April 2014a.

#### References II

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily Danchik, Michael T. Mordowanec, Henrietta Conrad, and Noah A. Smith. Comprehensive annotation of multiword expressions in a social web corpus. In *Proc. of LREC*, 2014b.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proc. of NAACL, 2003.