Natural Language Processing (CSE 517): Dependency Syntax and Parsing

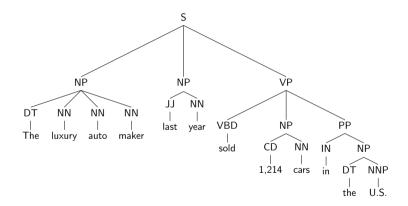
Noah A. Smith Swabha Swayamdipta

© 2018

University of Washington {nasmith,swabha}@cs.washington.edu

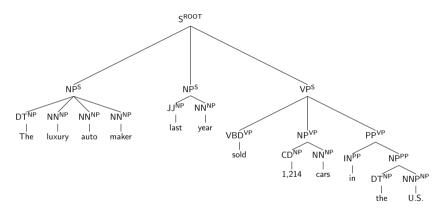
May 11, 2018

Recap: Phrase Structure



Parent Annotation

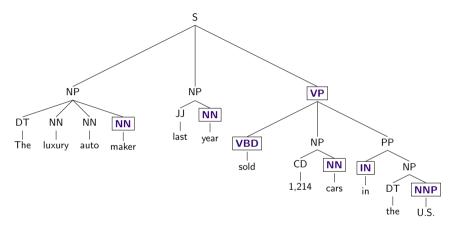
(Johnson, 1998)



Increases the "vertical" Markov order:

p(children | parent, grandparent)

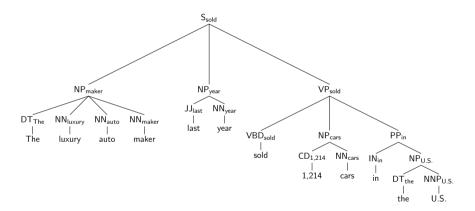
Headedness



Suggests "horizontal" markovization:

$$p(\mathsf{children} \mid \mathsf{parent}) = p(\mathsf{head} \mid \mathsf{parent}) \cdot \prod p(i\mathsf{th} \; \mathsf{sibling} \mid \mathsf{head}, \mathsf{parent})$$

Lexicalization



Each node shares a lexical head with its head child.

Dependencies

Informally, you can think of **dependency** structures as a transformation of phrase-structures that

- ▶ maintains the word-to-word relationships induced by lexicalization,
- adds labels to them, and
- eliminates the phrase categories.

There are also linguistic theories built on dependencies (Tesnière, 1959; Mel'čuk, 1987), as well as treebanks corresponding to those.

► Free(r)-word order languages (e.g., Czech)

Dependency Tree: Definition

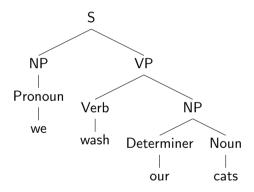
Let $\boldsymbol{x} = \langle x_1, \dots, x_n \rangle$ be a sentence. Add a special ROOT symbol as " x_0 ."

A dependency tree consists of a set of tuples $\langle p,c,\ell \rangle$, where

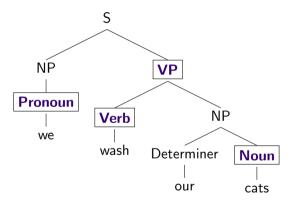
- ▶ $p \in \{0, ..., n\}$ is the index of a parent
- ▶ $c \in \{1, ..., n\}$ is the index of a child
- lacksquare $\ell \in \mathcal{L}$ is a label

Different annotation schemes define different label sets \mathcal{L} , and different constraints on the set of tuples. Most commonly:

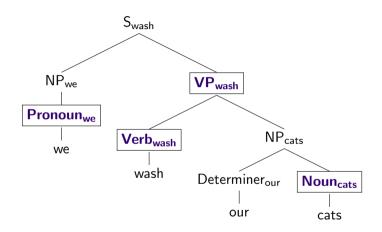
- ▶ The tuple is represented as a directed edge from x_p to x_c with label ℓ .
- ▶ The directed edges form an arborescence (directed tree) with x_0 as the root (sometimes denoted ROOT).



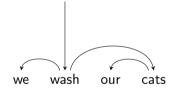
Phrase-structure tree.



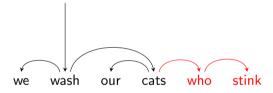
Phrase-structure tree with heads.

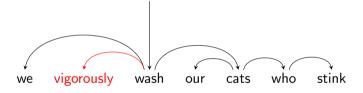


Phrase-structure tree with heads, lexicalized.



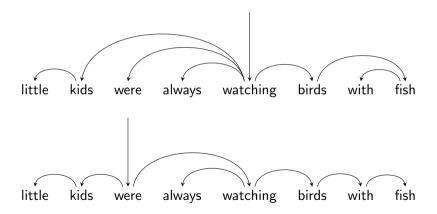
"Bare bones" dependency tree.



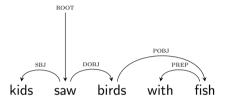


Content Heads vs. Function Heads

Credit: Nathan Schneider



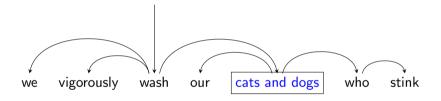
Labels



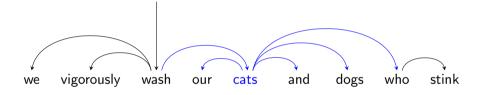
Key dependency relations captured in the labels include: subject, direct object, preposition object, adjectival modifier, adverbial modifier.

In this lecture, I will mostly not discuss labels, to keep the algorithms simpler.

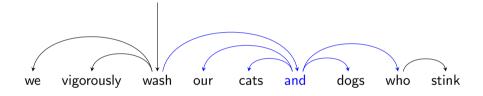
Coordination Structures



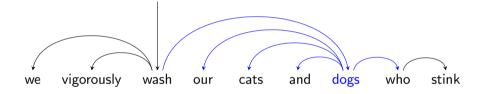
The bugbear of dependency syntax.



Make the first conjunct the head?

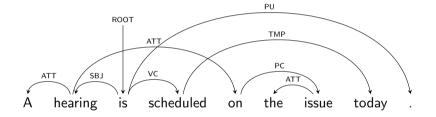


Make the coordinating conjunction the head?



Make the second conjunct the head?

Nonprojective Example



Dependency Schemes

- Direct annotation.
- ► Transform the treebank: define "head rules" that can select the head child of any node in a phrase-structure tree and label the dependencies.
 - ▶ More powerful, less local rule sets, possibly collapsing some words into arc labels.
 - ► Stanford dependencies are a popular example (de Marneffe et al., 2006).
 - Only results in projective trees.
- ▶ Rule based dependencies, followed by manual correction.

Approaches to Dependency Parsing

- 1. Transition-based parsing with a stack.
- 2. Chu-Liu-Edmonds algorithm for arborescences (directed graphs).
- 3. Dynamic programming with the Eisner algorithm.

▶ Dependency tree represented as a linear sequence of **transitions**.

- ▶ Dependency tree represented as a linear sequence of **transitions**.
- ► Transitions: Simple operations to be executed on a parser configuration

- ▶ Dependency tree represented as a linear sequence of **transitions**.
- ► Transitions: Simple operations to be executed on a parser configuration
- ightharpoonup Parser Configuration: stack S and a buffer B.

- ▶ Dependency tree represented as a linear sequence of **transitions**.
- ► Transitions: Simple operations to be executed on a parser configuration
- ▶ Parser Configuration: stack *S* and a buffer *B*.
- During parsing, apply a classifier to decide which transition to take next, greedily. No backtracking.

Transition-Based Parsing: Transitions

Parser Configuration:

- \blacktriangleright Initial Configuration: buffer contains x and the stack contains the ROOT.
- ► Final Configuration: Empty buffer and the stack contains the entire tree.

Transition-Based Parsing: Transitions

Parser Configuration:

- \blacktriangleright Initial Configuration: buffer contains x and the stack contains the ROOT.
- ► Final Configuration: Empty buffer and the stack contains the entire tree.

Transitions: "arc-standard" transition set (Nivre, 2004):

- ightharpoonup SHIFT the word at the front of the buffer B onto the stack S.
- ▶ RIGHT-ARC: u = pop(S); v = pop(S); $push(S, v \to u)$.
- ▶ LEFT-ARC: u = pop(S); v = pop(S); $push(S, v \leftarrow u)$.

Transition-Based Parsing: Transitions

Parser Configuration:

- \blacktriangleright Initial Configuration: buffer contains x and the stack contains the ROOT.
- ► Final Configuration: Empty buffer and the stack contains the entire tree.

Transitions: "arc-standard" transition set (Nivre, 2004):

- ightharpoonup SHIFT the word at the front of the buffer B onto the stack S.
- ▶ RIGHT-ARC: u = pop(S); v = pop(S); $push(S, v \to u)$.
- ▶ LEFT-ARC: u = pop(S); v = pop(S); $push(S, v \leftarrow u)$.

(For labeled parsing, add labels to the RIGHT-ARC and LEFT-ARC transitions.)

 $\mathsf{Stack}\ S :$

ROOT

Buffer B:

we
vigorously
wash
our
cats
who
stink

Actions:

Stack	S
JLack	\mathcal{L}

ROOT

Buffer B:

vigorously
wash
our
cats
who
stink

Actions: **SHIFT**

$Stack\ S$	Sta	ck	S
------------	-----	----	---

vigorously	
we	
ROOT	

Buffer B:

wash	
our	
cats	
who	
stink	

Actions: SHIFT SHIFT

Stack S:

wash	
vigorously	
we	
ROOT	

Buffer B:

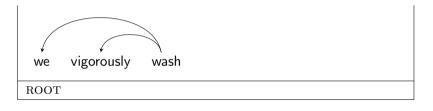
our	
cats	
who	
stink	

Actions: SHIFT SHIFT SHIFT

Stack S :	Buffer B :
	our cats
vigorously wash	who
we	stink
ROOT	

Actions: SHIFT SHIFT SHIFT LEFT-ARC

$\mathsf{Stack}\ S :$

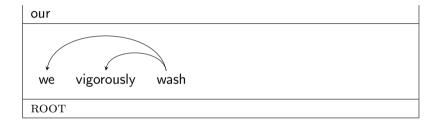


Buffer B:

our	
cats	
who	
stink	

Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC

Stack S:

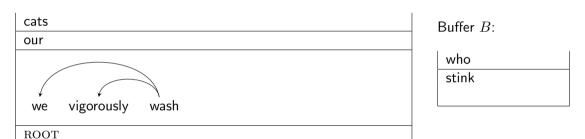


Buffer B:

cats	
who	
stink	

Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT

Stack S:

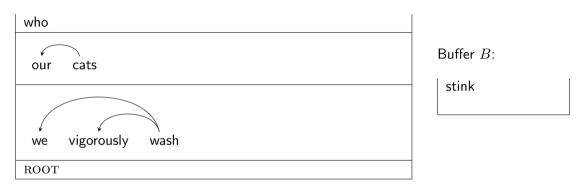


Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT

Stack S:

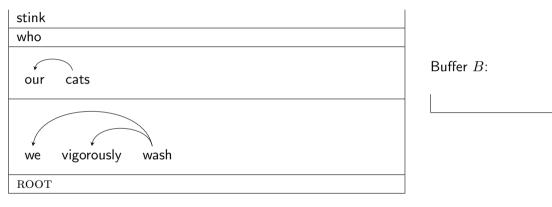
Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC

Stack S:



Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT

Stack S:

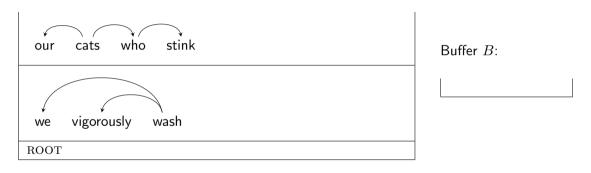


Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT

Stack S:

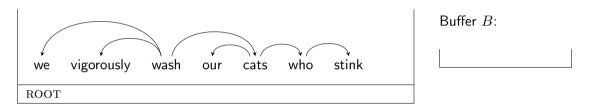
Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT RIGHT-ARC

Stack S:



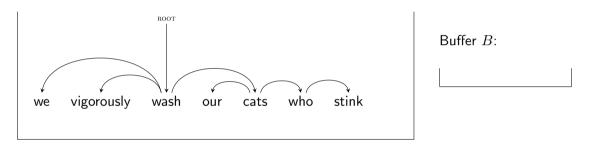
Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT RIGHT-ARC RIGHT-ARC

Stack S:



Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT RIGHT-ARC RIGHT-ARC RIGHT-ARC

Stack S:



Actions: SHIFT SHIFT LEFT-ARC LEFT-ARC SHIFT SHIFT LEFT-ARC SHIFT SHIFT RIGHT-ARC RIGHT-ARC RIGHT-ARC

▶ At each iteration, choose among $\{SHIFT, RIGHT-ARC, LEFT-ARC\}$. (Actually, among all \mathcal{L} -labeled variants of RIGHT- and LEFT-ARC.)

- ► At each iteration, choose among {SHIFT, RIGHT-ARC, LEFT-ARC}. (Actually, among all *L*-labeled variants of RIGHT- and LEFT-ARC.)
- \blacktriangleright Features can look S, B, and the history of past actions—usually there is no decomposition into local structures.

- ▶ At each iteration, choose among {SHIFT, RIGHT-ARC, LEFT-ARC}. (Actually, among all \mathcal{L} -labeled variants of RIGHT- and LEFT-ARC.)
- ► Features can look *S*, *B*, and the history of past actions—usually there is no decomposition into local structures.
- ▶ Training data: "oracle" transition sequence that gives the right tree converts into $2 \cdot n$ pairs: $\langle \text{state}, \text{ correct transition} \rangle$.

- ▶ At each iteration, choose among {SHIFT, RIGHT-ARC, LEFT-ARC}. (Actually, among all \mathcal{L} -labeled variants of RIGHT- and LEFT-ARC.)
- ► Features can look *S*, *B*, and the history of past actions—usually there is no decomposition into local structures.
- ▶ Training data: "oracle" transition sequence that gives the right tree converts into $2 \cdot n$ pairs: $\langle \text{state}, \text{ correct transition} \rangle$.
- ► Each word gets SHIFTed once and participates as a child in one ARC. **Linear time.**

Transition-Based Parsing: Remarks

- ► Can also be applied to phrase-structure parsing (e.g., Sagae and Lavie, 2006). Keyword: "shift-reduce" parsing.
- ► The algorithm for making decisions doesn't need to be greedy; can maintain multiple hypotheses.
 - ▶ E.g., **beam search**, which we'll discuss in the context of machine translation later.
- ▶ Potential flaw: the classifier is typically trained under the assumption that previous classification decisions were all *correct*.
 - As yet, no principled solution to this problem, but see "dynamic oracles" (Goldberg and Nivre, 2012).

Approaches to Dependency Parsing

- 1. Transition-based parsing with a stack.
- 2. Chu-Liu-Edmonds algorithm for arborescences (directed graphs).
- 3. Dynamic programming with the Eisner algorithm.

Acknowledgment

Slides are mostly adapted from those by Swabha Swayamdipta and Sam Thomson.

Features in Dependency Parsing

For transition-based parsing, we could use any past decisions to score the current decision:

$$s_{\mathsf{global}}(\boldsymbol{y}) = s(\boldsymbol{a}) = \sum_{i=1}^{|\boldsymbol{a}|} s(a_i \mid \boldsymbol{a}_{0:i-1})$$

We gave up on any guarantee of finding the best possible y in favor of arbitrary features.

▶ For a neural network-based model that fully exploits this, see Dyer et al. (2015).

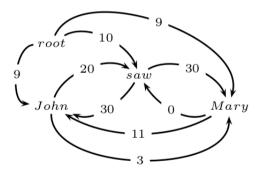
Graph-Based Dependency Parsing

Selects structures which are globally optimal.

Graph-Based Dependency Parsing

Selects structures which are globally optimal.

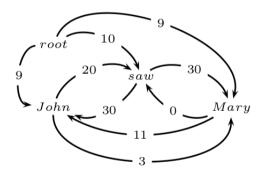
Start with a fully connected graph. Set of $O(n^2)$ edges, E.



Graph-Based Dependency Parsing

Selects structures which are globally optimal.

Start with a fully connected graph. Set of $O(n^2)$ edges, E.



No incoming edges to x_0 , ensuring that it will be the root.

First-Order Graph-Based (FOG) Dependency Parsing (McDonald et al., 2005)

Every possible directed edge e between a parent p and a child c gets a local score, s(e).

$$\boldsymbol{y}^* = \operatorname*{argmax}_{\boldsymbol{y} \subset E} s_{\mathsf{global}}(\boldsymbol{y}) = \operatorname*{argmax}_{\boldsymbol{y} \subset E} \sum_{e \in \boldsymbol{y}} s(e)$$

subject to the constraint that y is an arborescence

Classical algorithm to efficiently solve this problem: Chu and Liu (1965), Edmonds (1967)

▶ Every non-root node needs exactly one incoming edge.

- ► Every non-root node needs exactly one incoming edge.
- ▶ In fact, every connected component that doesn't contain x_0 needs exactly one incoming edge.

- ► Every non-root node needs exactly one incoming edge.
- ▶ In fact, every connected component that doesn't contain x_0 needs exactly one incoming edge.
- Maximum spanning tree.

- ▶ Every non-root node needs exactly one incoming edge.
- ▶ In fact, every connected component that doesn't contain x_0 needs exactly one incoming edge.
- Maximum spanning tree.

High-level view of the algorithm:

- 1. For every c, pick an incoming edge (i.e., pick a parent)—greedily.
- 2. If this forms an arborescence, you are done!
- 3. Otherwise, it's because there's a cycle, C.
 - ▶ Arborescences can't have cycles, so some edge in *C* needs to be kicked out.
 - ▶ We also need to find an incoming edge for C.
 - ► Choosing the incoming edge for *C* determines which edge to kick out.

Chu-Liu-Edmonds: Recursive (Inefficient) Definition

```
def maxArborescence (V, E, ROOT):
      # returns best arborescence as a map from each node to its parent
    for c in V \setminus \text{ROOT}:
         bestInEdge[c] \leftarrow \operatorname{argmax}_{e \in E: e = \langle n, c \rangle} e.s \# \text{i.e., } s(e)
         if bestInEdge contains a cycle C:
               \# build a new graph where C is contracted into a single node
              v_C \leftarrow \mathbf{new} \ \mathsf{Node}()
              V' \leftarrow V \cup \{v_C\} \setminus C
              E' \leftarrow \{ \mathtt{adjust}(e, v_C) \text{ for } e \in E \setminus C \}
              A \leftarrow \max Arborescence(V', E', ROOT)
              return \{e.\mathtt{original}\ \mathsf{for}\ e \in A\} \cup C \setminus \{A[v_C].\mathtt{kicksOut}\}
      # each node got a parent without creating any cycles
     return bestInEdge
```

Understanding Chu-Liu-Edmonds

There are two stages:

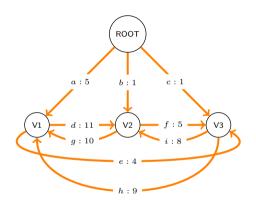
- ► **Contraction** (the stuff before the recursive call)
- ► **Expansion** (the stuff after the recursive call)

Chu-Liu-Edmonds: Contraction

- ▶ For each non-ROOT node v, set bestInEdge[v] to be its highest scoring incoming edge.
- ▶ If a cycle *C* is formed:
 - ightharpoonup contract the nodes in C into a new node v_C
 - adjust subroutine on next slide performs the following:
 - lacktriangle Edges incoming to any node in C now get destination v_C
 - ▶ For each node v in C, and for each edge e incoming to v from outside of C:
 - ▶ Set e.kicksOut to bestInEdge[v], and
 - ▶ Set e.s to be $e.s e.\mathtt{kicksOut}.s$
 - lacktriangle Edges outgoing from any node in C now get source v_C
- ► Repeat until every non-ROOT node has an incoming edge and no cycles are formed

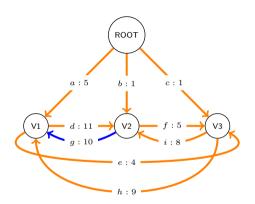
Chu-Liu-Edmonds: Edge Adjustment Subroutine

```
def adjust (e, v_C):
     e' \leftarrow \mathsf{copy}(e)
     e'.original \leftarrow e
     if e.dest \in C:
          e'.\mathtt{dest} \leftarrow v_C
          e'.kicksOut \leftarrow bestInEdge[e.dest]
          e'.s \leftarrow e.s - e'.kicksOut.s
     elif e.src \in C:
          e'.\mathtt{src} \leftarrow v_C
     return e'
```



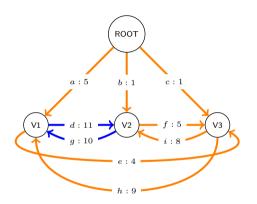
	bestInEdge
V1	
V2	
V3	

	kicksOut
а	
b	
c d	
d	
e f	
f	
g h	
h	
i	



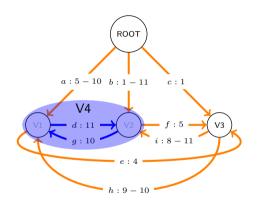
	bestInEdge
V1	g
V2	
V3	

	kicksOut
а	
b	
c d	
d	
e f	
f	
g h	
h	
i	



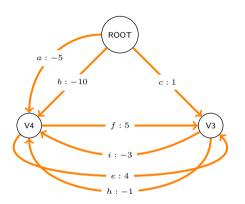
	bestInEdge
V1	g
V2	d
V3	

	kicks0ut
а	
a b	
c d	
d	
e f	
f	
g h	
h	
i	



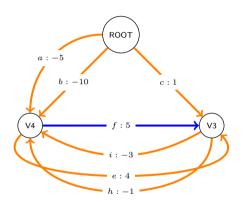
	bestInEdge
V1	g
V2	d
V3	

	kicksOut
а	g
b	g d
c d	
d	
е	
f	
g h	
h	g
i	g d



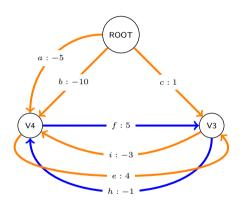
	bestInEdge
V1	g
V2	d
V3	
V4	

	kicksOut
a b	g d
b	d
c d	
d	
e f	
f	
g h	
h	g
l i	d



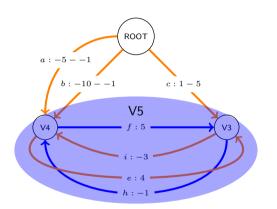
	bestInEdge
V1	g
V2	d
V3	f
V4	

	kicks0ut
a b	g d
	d
c d	
d	
e	
f	
g h	
h	g
l i	g d



	bestInEdge
V1	g
V2	d
V3	f
V4	h

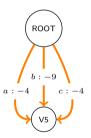
	kicksOut
а	g
a b	g d
c d	
d	
e	
f	
g h	
h	g
i	d



	bestInEdge
V1	g
V2	d
V3	f
V4	h
V5	

	kicksOut
а	g, h
b	d, h
c d	f
d	
e	
f	
g	
g h	g
l i	ď

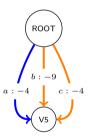
Contraction Example



	bestInEdge
V1	g
V2	d
V3	f
V4	h
V5	

	kicksOut
а	g, h
a b	d, h
c d	f
d	
e	f
f	
g	
g h	g
l i	ď

Contraction Example



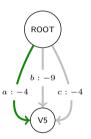
	bestInEdge
V1	g
V2	d
V3	f
V4	h
V5	а

	kicksOut
а	g, h
a b	d, h
c d	f
d	
e	f
f	
g	
g h	g
l i	ď

Chu-Liu-Edmonds: Expansion

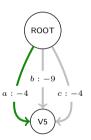
After the contraction stage, every contracted node will have exactly one bestInEdge. This edge will kick out one edge inside the contracted node, breaking the cycle.

- ► Go through each bestInEdge e in the reverse order that we added them
- ► Lock down e, and remove every edge in kicksOut(e) from bestInEdge.



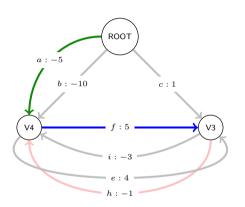
	${\tt bestInEdge}$
V1	g
V2	d
V3	f
V4	h
V5	а

	kicksOut
а	g, h
a b	d, h
c d	f
d	
е	f
e f	
g	
g h	g
l i	g d



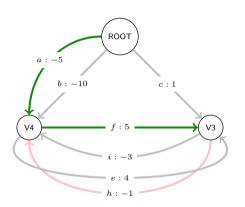
	bestInEdge
V1	a g
V2	ď
V3	f
V4	a K
V5	a

	kicksOut
а	g, h
b	d, h
а Ь с d	f
d	
e f	f
f	
g	
g h	g
i	g d



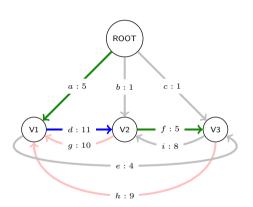
	bestInEdge
V1	a g
V2	ď
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
a b	g, h d, h
c d	f
d	
e f	f
f	
g h	
h	g
i	g d



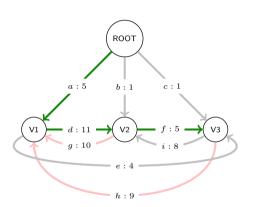
	bestInEdge
V1	a g
V2	ď
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
d	
е	f
f	
g	
h	g
l i	g d



	bestInEdge
V1	a g
V2	ď
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
d	
e	f
e f	
g	
g h	g
i	g d



	bestInEdge
V1	a g
V2	ď
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
d	
e	f
f	
g	
g h	g
i	g d

Observation

The set of arborescences strictly includes the set of projective dependency trees.

Is this a good thing or a bad thing?

► This is a greedy algorithm with a clever form of delayed backtracking to recover from inconsistent decisions (cycles).

- ► This is a greedy algorithm with a clever form of delayed backtracking to recover from inconsistent decisions (cycles).
- ▶ CLE is exact: it always recovers an optimal arborescence.

- ► This is a greedy algorithm with a clever form of delayed backtracking to recover from inconsistent decisions (cycles).
- ▶ CLE is exact: it always recovers an optimal arborescence.
- ► What about labeled dependencies?
 - lacktriangle As a matter of preprocessing, for each $\langle p,c \rangle$, keep only the top-scoring labeled edge.

- ► This is a greedy algorithm with a clever form of delayed backtracking to recover from inconsistent decisions (cycles).
- ▶ CLE is exact: it always recovers an optimal arborescence.
- ▶ What about labeled dependencies?
 - lacktriangle As a matter of preprocessing, for each $\langle p,c \rangle$, keep only the top-scoring labeled edge.
- ► Tarjan (1977) offered a more efficient, but unfortunately incorrect, implementation.

Camerini et al. (1979) corrected it.

The approach is not recursive; instead using a disjoint set data structure to keep track of collapsed nodes.

Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges sorted, and finds cycles in a more sensible way. Also constrains root to have only one outgoing edge.

With these tricks, $O(n^2 + n \log n)$ runtime.

More Details on Statistical Dependency Parsing

▶ What about the scores? McDonald et al. (2005) used carefully-designed features and (something close to) the structured perceptron; Kiperwasser and Goldberg (2016) used bidirectional recurrent neural networks.

More Details on Statistical Dependency Parsing

- ▶ What about the scores? McDonald et al. (2005) used carefully-designed features and (something close to) the structured perceptron; Kiperwasser and Goldberg (2016) used bidirectional recurrent neural networks.
- ▶ What about higher-order parsing? Requires approximate inference, e.g., dual decomposition (Martins et al., 2013).

Important Tradeoffs (and Not Just in NLP)

1. Two extremes:

- ► Specialized algorithm that efficiently solves your problem, under your assumptions. E.g., Chu-Liu-Edmonds for FOG dependency parsing.
- General-purpose method that solves many problems, allowing you to test the effect
 of different assumptions. E.g., dynamic programming, transition-based methods,
 some forms of approximate inference.

Important Tradeoffs (and Not Just in NLP)

1. Two extremes:

- ► Specialized algorithm that efficiently solves your problem, under your assumptions. E.g., Chu-Liu-Edmonds for FOG dependency parsing.
- ► General-purpose method that solves many problems, allowing you to test the effect of different assumptions. E.g., dynamic programming, transition-based methods, some forms of approximate inference.

2. Two extremes:

- ► Fast (linear-time) but greedy
- Model-optimal but slow

Important Tradeoffs (and Not Just in NLP)

1. Two extremes:

- ► Specialized algorithm that efficiently solves your problem, under your assumptions. E.g., Chu-Liu-Edmonds for FOG dependency parsing.
- ► General-purpose method that solves many problems, allowing you to test the effect of different assumptions. E.g., dynamic programming, transition-based methods, some forms of approximate inference.

2. Two extremes:

- ► Fast (linear-time) but greedy
- ► Model-optimal but slow
 - Dirty secret: the best way to get (English) dependency trees is to run phrase-structure parsing, then convert.

References I

- Paolo M. Camerini, Luigi Fratta, and Francesco Maffioli. A note on finding optimum branchings. *Networks*, 9 (4):309–312, 1979.
- Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica, 14:1396-1400, 1965.
- Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating typed dependency parses from phrase structure parses. In *Proc. of LREC*, 2006.
- Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. Transition-based dependency parsing with stack long short-term memory. In *Proc. of ACL*, 2015.
- Jack Edmonds. Optimum branchings. *Journal of Research of the National Bureau of Standards*, 71B:233–240, 1967.
- Harold N. Gabow, Zvi Galil, Thomas Spencer, and Robert E. Tarjan. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. *Combinatorica*, 6(2):109–122, 1986.
- Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency parsing. In *Proc. of COLING*, 2012.
- Mark Johnson. PCFG models of linguistic tree representations. Computational Linguistics, 24(4):613-32, 1998.
- Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirectional LSTM feature representations. *Transactions of the Association for Computational Linguistics*, 4:313–327, 2016.
- André F. T. Martins, Miguel Almeida, and Noah A. Smith. Turning on the turbo: Fast third-order non-projective turbo parsers. In *Proc. of ACL*, 2013.

References II

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective dependency parsing using spanning tree algorithms. In *Proceedings of HLT-EMNLP*, 2005. URL http://www.aclweb.org/anthology/H/H05/H05-1066.pdf.

Igor A. Mel'čuk. Dependency Syntax: Theory and Practice. State University Press of New York, 1987.

Joakim Nivre. Incrementality in deterministic dependency parsing. In Proc. of ACL, 2004.

Kenji Sagae and Alon Lavie. A best-first probabilistic shift-reduce parser. In Proc. of COLING-ACL, 2006.

Robert E. Tarjan. Finding optimum branchings. Networks, 7:25-35, 1977.

L. Tesnière. Éléments de Syntaxe Structurale. Klincksieck, 1959.