
CSE 517
Natural Language Processing

Winter 2017

Yejin Choi - University of Washington

[Many slides from Dan Klein, Luke Zettlemoyer]

Feature Rich Models

Structure in the output variable(s)?
No Structure Structured Inference

Generative models
(classical probabilistic
models)

Naïve Bayes HMMs
PCFGs
IBM Models

Log-linear models
(discriminatively
trained feature-rich
models)

Perceptron
Maximum Entropy
Logistic Regression

MEMM
CRF

Neural network
models
(representation
learning)

Feedforward NN
CNN

RNN
LSTM
GRU …

W
ha

t i
s

th
e

in
pu

t r
ep

re
se

nt
at

io
n?

Feature Rich Models

§ Throw anything (features) you want
into the stew (the model)

§ Log-linear models
§ Often lead to great performance.
(sometimes even a best paper award) "11,001 New Features for Statistical
Machine Translation", D. Chiang, K. Knight, and W. Wang, NAACL, 2009.

Why want richer features?
§ POS tagging: more information about the context?

§ Is previous word “the”?
§ Is previous word “the” and the next word “of”?
§ Is previous word capitalized and the next word is numeric?

§ Is there a word “program” within [-5,+5] window?
§ Is the current word part of a known idiom?
§ Conjunctions of any of above?

§ Desiderata:
§ Lots and lots of features like above: > 200K
§ No independence assumption among features

§ Classical probability models, however
§ Permit very small amount of features
§ Make strong independence assumption among features

HMMs: P(tag sequence|sentence)
§ We want a model of sequences y and observations x

where y0=START and we call q(y’|y) the transition distribution and e(x|y) the
emission (or observation) distribution.

§ Assumptions:
§ Tag/state sequence is generated by a markov model
§ Words are chosen independently, conditioned only on the tag/state
§ These are totally broken assumptions: why?

y1 y2 yn

x1 x2 xn

y0 yn+1

p(x1...xn, y1...yn+1) = q(stop|yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

PCFG ExampleA Probabilistic Context-Free Grammar (PCFG)

S ⇒ NP VP 1.0
VP ⇒ Vi 0.4
VP ⇒ Vt NP 0.4
VP ⇒ VP PP 0.2
NP ⇒ DT NN 0.3
NP ⇒ NP PP 0.7
PP ⇒ P NP 1.0

Vi ⇒ sleeps 1.0
Vt ⇒ saw 1.0
NN ⇒ man 0.7
NN ⇒ woman 0.2
NN ⇒ telescope 0.1
DT ⇒ the 1.0
IN ⇒ with 0.5
IN ⇒ in 0.5

• Probability of a tree t with rules

α1 → β1,α2 → β2, . . . ,αn → βn

is
p(t) =

n
∏

i=1

q(αi → βi)

where q(α → β) is the probability for rule α → β.

44

The man saw the woman with the telescope

NNDT

NP

NNDT

NP

NNDT

NPVt

VP

IN

PP

VP

S

t2=

p(ts)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1

1.0

0.3 0.3 0.3

0.2

0.4 0.4

0.51.0

1.0 1.0 1.00.7 0.2 0.1

PCFGs: P(parse tree|sentence)

Rich features for long range dependencies

§ What’s different between basic PCFG scores here?
§ What (lexical) correlations need to be scored?

LMs: P(text)

§ Generative process: (1) generate the very first word conditioning on the special
symbol START, then, (2) pick the next word conditioning on the previous word,
then repeat (2) until the special word STOP gets picked.

§ Graphical Model:

§ Subtleties:
§ If we are introducing the special START symbol to the model, then we are making the

assumption that the sentence always starts with the special start word START, thus
when we talk about it is in fact

§ While we add the special STOP symbol to the vocabulary , we do not add the
special START symbol to the vocabulary. Why?

x1 x2 xn-1 STOPSTART

p(x1...xn

) =
nY

i=1

q(x
i

|x
i�1) where

X

xi2V⇤

q(x
i

|x
i�1) = 1

x0 = START & V⇤ := V [{STOP}

p(x1...xn) p(x1...xn|x0 = START)

V⇤

Internals of probabilistic models:
nothing but adding log-prob

§ LM: … + log p(w7 | w5, w6) + log p(w8 | w6, w7) + …

§ PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

§ HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

§ Noisy channel: [log p(source)] + [log p(data | source)]
§ Naïve Bayes:

log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

Change log p(this | that) to Φ(this ; that)

arbitrary scores instead of log probs?

§ LM: … + Φ (w7 ; w5, w6) + Φ (w8 ; w6, w7) + …

§ PCFG: Φ (NP VP ; S) + Φ (Papa ; NP) + Φ (VP PP ; VP) …

§ HMM tagging: … + Φ (t7 ; t5, t6) + Φ (w7 ; t7) + …

§ Noisy channel: [Φ (source)] + [Φ (data ; source)]
§ Naïve Bayes:

Φ (Class) + Φ (feature1 ; Class) + Φ (feature2 ; Class) …

Change log p(this | that) to Φ(this ; that)

arbitrary scores instead of log probs?

§ LM: … + Φ (w7 ; w5, w6) + Φ (w8 ; w6, w7) + …

§ PCFG: Φ (NP VP ; S) + Φ (Papa ; NP) + Φ (VP PP ; VP) …

§ HMM tagging: … + Φ (t7 ; t5, t6) + Φ (w7 ; t7) + …

§ Noisy channel: [Φ (source)] + [Φ (data ; source)]
§ Naïve Bayes:

Φ (Class) + Φ (feature1 ; Class) + Φ (feature2 ; Class) …
logistic regression / max-ent

MEMM or CRF

Running example: POS tagging
§ Roadmap of (known / unknown) accuracies:
§ Strawman baseline:

§ Most freq tag: ~90% / ~50%
§ Generative models:

§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0% (with smart UNK’ing)

§ Feature-rich models?

§ Upper bound: ~98%

Structure in the output variable(s)?
No Structure Structured Inference

Generative models
(classical probabilistic
models)

Naïve Bayes HMMs
PCFGs
IBM Models

Log-linear models
(discriminatively
trained feature-rich
models)

Perceptron
Maximum Entropy
Logistic Regression

MEMM
CRF

Neural network
models
(representation
learning)

Feedforward NN
CNN

RNN
LSTM
GRU …

W
ha

t i
s

th
e

in
pu

t r
ep

re
se

nt
at

io
n?

Rich features for rich contextual information

§ Throw in various features about the context:
§ Is previous word “the” and the next word “of”?
§ Is previous word capitalized and the next word is numeric?
§ Frequencies of “the” within [-15,+15] window?
§ Is the current word part of a known idiom?

§ You can also define features that look at the output ‘Y’!
§ Is previous word “the” and the next tag is “IN”?
§ Is previous word “the” and the next tag is “NN”?
§ Is previous word “the” and the next tag is “VB”?

§ You can also take any conjunctions of above.

§ Create a very long feature vector with dimensions often >200K
§ Overlapping features are fine – no independence assumption among

features

f(x, y) = [0, 0, 0, 1, 0, 0, 0, 0, 3, 0.2, 0, 0,]

Maximum Entropy (MaxEnt) Models
� Output:	y

� One	POS	tag	for	one	word	(at	a	time)

� Input:	x (any	words	in	the	context)
� Represented	as	a	feature	vector	f(x, y)

� Model	parameters:	w
� Make	probability	using	SoftMax function:
� Also	known	as	“Log-linear”	Models	(linear	if	you	take	log)

y3

x3 x4x2

p(y|x) = exp(w · f(x, y))P
y0 exp(w · f(x, y0))

Make positive!

Normalize!

Training MaxEnt Models
� Make probability using SoftMax function

� Training:
� maximize log likelihood of training data

� which also incidentally maximizes the entropy (hence
“maximum entropy”)

L(w) = log

Y

i

p(y

i|xi
) =

X

i

log

exp(w · f(xi
, y

i
))P

y0 exp(w · f(xi
, y

0
))

p(y|x) = exp(w · f(x, y))P
y0 exp(w · f(x, y0))

{(xi
, y

i)}ni=1

Training MaxEnt Models
� Make probability using SoftMax function

� Training:
� maximize log likelihood

L(w) = log

Y

i

p(y

i|xi
) =

X

i

log

exp(w · f(xi
, y

i
))P

y0 exp(w · f(xi
, y

0
))

=

X

i

⇣
w · f(xi

, y

i
)� log

X

y0

exp(w · f(xi
, y

0
))

⌘

p(y|x) = exp(w · f(x, y))P
y0 exp(w · f(x, y0))

Training MaxEnt Models

L(w) =

X

i

⇣
w · f(xi

, y

i
)� log

X

y0

exp(w · f(xi
, y

0
))

⌘

Total count of feature k
with respect to the
correct predictions

Expected count of feature k
with respect to the
predicted output

Take partial derivative for each in the weight vector w:

@L(w)

@wk
=

X

i

⇣
fk(x

i
, y

i)�
X

y0

p(y0|xi)fk(x
i
, y

0))
⌘

wk

Convex Optimization for Training

� The	likelihood	function	is	convex.	(can	get	global	optimum)
� Many	optimization	algorithms/software	available.

� Gradient	ascent	(descent),	Conjugate	Gradient,	L-BFGS,	etc

� All	we	need	are:
(1)	evaluate	the	function	at	current	‘w’
(2)	evaluate	its	derivative	at	current	‘w’

Graphical Representation of MaxEnt

Y

x1 x2 … xn

Output

Input

p(y|x) = exp(w · f(x, y))P
y0 exp(w · f(x, y0))

Graphical Representation of Naïve Bayes

Y

x1 x2 … xn

Output

Input

p(x|y) =
Y

j

p(xj |y)

Naïve Bayes Classifier Maximum Entropy Classifier

“Generative” models
è p(input | output)
è For instance, for text categorization,

P(words | category)
è Unnecessary efforts on generating input

“Discriminative” models
è p(output | input)
è For instance, for text categorization,

P(category | words)
è Focus directly on predicting the output

è Independent assumption among input
variables: Given the category, each word is
generated independently from other words
(too strong assumption in reality!)

è Cannot incorporate
arbitrary/redundant/overlapping features

è By conditioning on the entire input, we
don’t need to worry about the
independent assumption among input
variables

è Can incorporate arbitrary features:
redundant and overlapping features

MaxEnt
Naïve
Bayes

Y

x1 x2 … xn

Y

x1 x2 … xn

Overview: POS tagging Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%

§ Q: what’s missing in MaxEnt compared to HMM?

§ Upper bound: ~98%

Structure in the output variable(s)?
No Structure Structured Inference

Generative models
(classical probabilistic
models)

Naïve Bayes HMMs
PCFGs
IBM Models

Log-linear models
(discriminatively
trained feature-rich
models)

Perceptron
Maximum Entropy
Logistic Regression

MEMM
CRF

Neural network
models
(representation
learning)

Feedforward NN
CNN

RNN
LSTM
GRU …

W
ha

t i
s

th
e

in
pu

t r
ep

re
se

nt
at

io
n?

MEMM Taggers
§ One step up: also condition on previous tags

§ Train up p(si|si-1,x1...xm) as a discrete log-linear (maxent) model,
then use to score sequences

§ This is referred to as an MEMM tagger [Ratnaparkhi 96]
§ Beam search effective! (Why?)
§ What’s the advantage of beam size 1?

p(s1 . . . sm|x1 . . . xm) =
mY

i=1

p(si|s1 . . . si�1, x1 . . . xm)

=
mY

i=1

p(si|si�1, x1 . . . xm)

p(si|si�1, x1 . . . xm) =
exp

(

w · �(x1 . . . xm, i, si�1, si))P
s0 exp (w · �(x1 . . . xm, i, si�1, s0))

HMM MEMM

“Generative” models
è joint probability p(words, tags)
è“generate” input (in addition to tags)
è but we need to predict tags, not words!

“Discriminative” or “Conditional” models
è conditional probability p(tags | words)
è“condition” on input
è Focusing only on predicting tags

Probability of each slice =
emission * transition =
p(word_i | tag_i) * p(tag_i | tag_i-1) =

è Cannot incorporate long distance
features

Probability of each slice =
p(tag_i | tag_i-1, word_i)

or
p(tag_i | tag_i-1, all words)

è Can incorporate long distance features

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

HMM

MEMM

The HMM State Lattice / Trellis (repeat slide)

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)q(V|V)

e(STOP|V)

The MEMM State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

x = START Fed raises interest rates STOP

p(V|V,x)

Decoding:
§ Decoding maxent taggers:

§ Just like decoding HMMs
§ Viterbi, beam search, posterior decoding

§ Viterbi algorithm (HMMs):
§ Define π(i,si) to be the max score of a sequence of length i ending in tag si

§ Viterbi algorithm (Maxent):
§ Can use same algorithm for MEMMs, just need to redefine π(i,si) !

�(i, si) = max

si�1

e(xi|si)q(si|si�1)�(i� 1, si�1)

�(i, si) = max

si�1

p(si|si�1, x1 . . . xm)�(i� 1, si�1)

p(s1 . . . sm|x1 . . . xm) =
mY

i=1

p(si|s1 . . . si�1, x1 . . . xm)=
mY

i=1

p(si|si�1, x1 . . . xm)

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%

§ Upper bound: ~98%

Structure in the output variable(s)?
No Structure Structured Inference

Generative models
(classical probabilistic
models)

Naïve Bayes HMMs
PCFGs
IBM Models

Log-linear models
(discriminatively
trained feature-rich
models)

Perceptron
Maximum Entropy
Logistic Regression

MEMM
CRF

Neural network
models
(representation
learning)

Feedforward NN
CNN

RNN
LSTM
GRU …

W
ha

t i
s

th
e

in
pu

t r
ep

re
se

nt
at

io
n?

MEMM v.s. CRF
(Conditional Random Fields)

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

MEMM

CRF

Graphical Models

§ Conditional probability for each node
§ e.g. p(Y3 | Y2, X3) for Y3
§ e.g. p(X3) for X3

§ Conditional independence
§ e.g. p(Y3 | Y2, X3) = p(Y3 | Y1, Y2, X1, X2, X3)

§ Joint probability of the entire graph
= product of conditional probability of each node

Y1 Y2 Y3

X1 X2 X3

Undirected Graphical Model Basics

§ Conditional independence
§ e.g. p(Y3 | all other nodes) = p(Y3 | Y3’ neighbor)

§ No conditional probability for each node
§ Instead, “potential function” for each clique

§ e.g. φ (X1, X2, Y1) or φ (Y1, Y2)
§ Typically, log-linear potential functions

è φ (Y1, Y2) = exp Σk wk fk (Y1, Y2)

Y1 Y2 Y3

X1 X2 X3

Undirected Graphical Model Basics

§ Joint probability of the entire graph

Y1 Y2 Y3

X1 X2 X3

P(Y

) = 1
Z

ϕ(Y

C)

clique C
∏

Z =
Y

∑ ϕ(Y

C)

clique C
∏

MEMM CRF

Directed graphical model Undirected graphical model

“Discriminative” or “Conditional” models
è conditional probability p(tags | words)

Probability is defined for each slice =

P (tag_i | tag_i-1, word_i)
or

p (tag_i | tag_i-1, all words)

Instead of probability, potential (energy function)
is defined for each slide =
φ (tag_i, tag_i-1) * φ (tag_i, word_i)

or
φ (tag_i, tag_i-1, all words) * φ (tag_i, all words)

è Can incorporate long distance features

Secretariat is expected to race tomorrow

NNP VB
Z

VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VB
Z

VBN TO VB NR

MEMM

CRF

Conditional Random Fields (CRFs)
§ Maximum entropy (logistic regression)

§ Learning: maximize the (log) conditional likelihood of training
data

§ Computational Challenges?
§ Most likely tag sequence, normalization constant, gradient

Sentence: x=x1…xm

Tag Sequence: s=s1…sm

[Lafferty, McCallum, Pereira 01]

{(xi
, y

i)}ni=1

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

@

@wj
L(w) =

nX

i=1

�j(xi, si)�

X

s

p(s|xi;w)�j(xi, s)

!
� �wj

Decoding
§ CRFs

§ Features must be local, for x=x1…xm, and s=s1…sm

§ Viterbi recursion

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

s

⇤
= argmax

s
p(s|x;w)

argmax

s

exp (w · �(x, s))P
s0 exp (w · �(x, s0))

= argmax

s
exp (w · �(x, s))

= argmax

s
w · �(x, s)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

⇡(i, si) = max

si�1

�(x, i, si�1, si) + ⇡(i� 1, si�1)

CRFs: Computing Normalization*

§ Forward Algorithm! Remember HMM case:

§ Could also use backward?

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

X

s0

exp
�
w ·�(x, s0)

�

�(i, yi) =
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

=

X

s0

Y

j

exp

(

w · �(x, j, sj�1, sj))

=

X

s0

exp

0

@
X

j

w · �(x, j, sj�1, sj)

1

A

Define norm(i,si) to sum of scores for sequences ending in position i

norm(i, yi) =
X

si�1

exp

(

w · �(x, i, si�1, si))norm(i� 1, si�1)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

CRFs: Computing Gradient*

§ Need forward and backward messages
See notes for full details!

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

@

@wj
L(w) =

nX

i=1

�j(xi, si)�

X

s

p(s|xi;w)�j(xi, s)

!
� �wj

X

s

p(s|xi;w)�j(xi, s) =
X

s

p(s|xi;w)
mX

j=1

�k(xi, j, sj�1, sj)

=
mX

j=1

X

a,b

X

s:sj�1=a,sb=b

p(s|xi;w)�k(xi, j, sj�1, sj)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%
§ CRF (untuned) 95.7% / 76.2%

§ Upper bound: ~98%

Cyclic Network
§ Train two MEMMs,

multiple together to
score

§ And be very careful
• Tune regularization
• Try lots of different

features
• See paper for full

details

[Toutanova et al 03]

Cyclic Tagging
[Toutanova et al 03]

 Another idea: train a bi-directional MEMM

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

 And be careful
experimentally!
 Try lots of features on

dev. set
 Use L2 regularization
 see paper...

Overview: Accuracies
§ Roadmap of (known / unknown) accuracies:

§ Most freq tag: ~90% / ~50%
§ Trigram HMM: ~95% / ~55%
§ TnT (HMM++): 96.2% / 86.0%
§ Maxent P(si|x): 96.8% / 86.8%
§ MEMM tagger: 96.9% / 86.9%
§ Perceptron 96.7% / ??
§ CRF (untuned) 95.7% / 76.2%
§ Cyclic tagger: 97.2% / 89.0%
§ Upper bound: ~98%

§ Locally normalized models
§ HMMs, MEMMs
§ Local scores are probabilities
§ However: one issue in local models

§ “Label bias” and other explaining away effects
§ MEMM taggers’ local scores can be near one without having

both good “transitions” and “emissions”
§ This means that often evidence doesn’t flow properly
§ Why isn’t this a big deal for POS tagging?

§ Globally normalized models
§ Local scores are arbitrary scores
§ Conditional Random Fields (CRFs)
§ Slower to train (structured inference at each iteration of learning)
§ Neural Networks (global training w/o structured inference)

Structure in the output variable(s)?
No Structure Structured Inference

Generative models
(classical probabilistic
models)

Naïve Bayes HMMs
PCFGs
IBM Models

Log-linear models
(discriminatively
trained feature-rich
models)

Perceptron
Maximum Entropy
Logistic Regression

MEMM
CRF

Neural network
models
(representation
learning)

Feedforward NN
CNN

RNN
LSTM
GRU …

W
ha

t i
s

th
e

in
pu

t r
ep

re
se

nt
at

io
n?

