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Quick Review: Text Classification

Input: a piece of text € V1, usually a document (r.v. X)
Output: a label from a finite set £ (r.v. L)

Standard line of attack:
1. Human experts label some data.

2. Feed the data to a supervised machine learning algorithm that
constructs an automatic classifier classify : VI — £

3. Apply classify to as much data as you want!

We covered naive Bayes, reviewed multinomial logistic regression,
and, briefly, the perceptron.
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Multinomial Logistic Regression as “Log Loss"

expw - ¢(x,l)

p(L =/ | $) = Zg/eﬁ expw - d)(wagl)

MLE can be rewritten as a minimization problem:

W = argminz log Z expw - ¢z, ') —w - d(x;, 4;)
w ———

=1 tel hope

fear

Recall from lecture 3:
> Be wise and regularize!
» Solve with batch or stochastic gradient methods.

» w; has an interpretation.
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Log Loss and Hinge Loss for (x, ()

log loss: <log Z expw - ¢(x, Z’)) —w- ¢z, )

el
hinge loss: <1251al>:<w : (j)(ac,é’)) —w- oz, )
€
In the binary case, where “score” is the linear score of the correct
label:
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Minimizing Hinge Loss: Perceptron

mlnz (maxw 1) a:l,ﬁl)> —w - p(xi, 4;)

Stochastic subgradient descent on the above is called the
perceptron algorithm.
» Forte{1,...,T}:
» Pick i, uniformly at random from {1,...,n}.
» {;, < argmax,c, W - ¢(x;,, {)
> WEW—a (¢(wi,7éit) - ¢($z’,,,€i,,))
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

Let cost(¢, ¢') quantify the “badness” of substituting ¢’ for correct
label 2.
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

Let cost(¢, ¢') quantify the “badness” of substituting ¢ for correct
label £.

Intuition: estimate the scoring function so that

A A

score({;) — score(l) o cost(l;, )



General Hinge Loss for (z, ()

(maxw - (x, L) + cost(l, e’)) —w-é(, L)

el

In the binary case, with cost(—1,1) = 1:

5 6

4

2

TUNCUION(X) =X + pmax(x, 1)
1 3

0

In blue is the general hinge loss; in red is the “zero-one” loss
(error).
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Support Vector Machines

A different motivation for the generalized hinge:

W= ais plai )

i=1Lel

where most only a small number of «; ¢ are nonzero.
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Support Vector Machines

A different motivation for the generalized hinge:

n

W=> ) i il

i=1 (el

where most only a small number of «; ¢ are nonzero.

Those ¢(x;,¢) are called “"support vectors” because they
“support” the decision boundary.

W@, )= D i dlail) - pla, l)

(i,0)eS

See Crammer and Singer (2001) for the multiclass version.
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Support Vector Machines

A different motivation for the generalized hinge:

W= ais ozl
i=1 LeL

where most only a small number of «; ¢ are nonzero.

Those ¢(x;,¢) are called "support vectors” because they
“support” the decision boundary.

Wop@ )= > iz l) d(a,l)

(i,0)eS

See Crammer and Singer (2001) for the multiclass version.

Really good tool: SVM'8ht http://svmlight.joachims.org
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http://svmlight.joachims.org

Support Vector Machines: Remarks

» Regularization is critical; squared ¢5 is most common, and
often used in (yet another) motivation around the idea of
“maximizing margin” around the hyperplane separator.
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Support Vector Machines: Remarks

» Regularization is critical; squared {5 is most common, and
often used in (yet another) motivation around the idea of
“maximizing margin” around the hyperplane separator.

» Often, instead of linear models that explicitly calculate w - ¢,

these methods are “kernelized” and rearrange all calculations
to involve inner-products between ¢ vectors.

» Example:

Klinear(V7 W) =V -W
Kpolynomial(va W) = (V - W+ 1)}7
2
vV —-—W
Kgaussian(V, W) = exp _”272H2
(o)

» Linear kernels are most common in NLP.
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General Remarks

» Text classification: many problems, all solved with supervised
learners.

» Lexicon features can provide problem-specific guidance.
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General Remarks

» Text classification: many problems, all solved with supervised
learners.
» Lexicon features can provide problem-specific guidance.
» Naive Bayes, log-linear, and SVM are all linear methods that
tend to work reasonably well, with good features and
smoothing/regularization.

» You should have a basic understanding of the tradeoffs in
choosing among them.
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» Naive Bayes, log-linear, and SVM are all linear methods that
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smoothing/regularization.
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» Rumor: random forests are widely used in industry when
performance matters more than interpretability.
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General Remarks

» Text classification: many problems, all solved with supervised
learners.

» Lexicon features can provide problem-specific guidance.
» Naive Bayes, log-linear, and SVM are all linear methods that

tend to work reasonably well, with good features and
smoothing/regularization.

» You should have a basic understanding of the tradeoffs in
choosing among them.
» Rumor: random forests are widely used in industry when
performance matters more than interpretability.

» Lots of papers about neural networks, but with
hyperparameter tuning applied fairly to linear models, the
advantage is not clear (Yogatama et al., 2015).
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Readings and Reminders

» Jurafsky and Martin (2015); Collins (2011)

» Submit a suggestion for an exam question by Friday at 5pm.
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