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Quick Review: Text Classification

Input: a piece of text x ∈ V†, usually a document (r.v. X)
Output: a label from a finite set L (r.v. L)

Standard line of attack:

1. Human experts label some data.

2. Feed the data to a supervised machine learning algorithm that
constructs an automatic classifier classify : V† → L

3. Apply classify to as much data as you want!

We covered näıve Bayes, reviewed multinomial logistic regression,
and, briefly, the perceptron.
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Multinomial Logistic Regression as “Log Loss”

p(L = ` | x) = expw · φ(x, `)∑
`′∈L expw · φ(x, `′)

MLE can be rewritten as a minimization problem:

ŵ = argmin
w

n∑
i=1

log
∑
`′∈L

expw · φ(xi, `
′)︸ ︷︷ ︸

fear

−w · φ(xi, `i)︸ ︷︷ ︸
hope

Recall from lecture 3:

I Be wise and regularize!

I Solve with batch or stochastic gradient methods.

I wj has an interpretation.
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Log Loss and Hinge Loss for (x, `)

log loss:

(
log
∑
`′∈L

expw · φ(x, `′)

)
−w · φ(x, `)

hinge loss:

(
max
`′∈L

w · φ(x, `′)
)
−w · φ(x, `)

In the binary case, where “score” is the linear score of the correct
label:
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In purple is the hinge loss, in blue is the log loss; in red is the
“zero-one” loss (error).
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Minimizing Hinge Loss: Perceptron

min
w

n∑
i=1

(
max
`′∈L

w · φ(xi, `
′)

)
−w · φ(xi, `i)

Stochastic subgradient descent on the above is called the
perceptron algorithm.

I For t ∈ {1, . . . , T}:
I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

it ← argmax`∈L w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀
it)− φ(xit , `it)

)
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.
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Error Costs

Suppose that not all mistakes are equally bad.

E.g., false positives vs. false negatives in spam detection.

Let cost(`, `′) quantify the “badness” of substituting `′ for correct
label `.

Intuition: estimate the scoring function so that

score(`i)− score(ˆ̀) ∝ cost(`i, ˆ̀)
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General Hinge Loss for (x, `)

(
max
`′∈L

w · φ(x, `′) + cost(`, `′)

)
−w · φ(x, `)

In the binary case, with cost(−1, 1) = 1:
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In blue is the general hinge loss; in red is the “zero-one” loss
(error).
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Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where most only a small number of αi,` are nonzero.
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Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where most only a small number of αi,` are nonzero.

Those φ(xi, `) are called “support vectors” because they
“support” the decision boundary.

ŵ · φ(x, `′) =
∑

(i,`)∈S

αi,` · φ(xi, `) · φ(x, `′)

See Crammer and Singer (2001) for the multiclass version.
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Support Vector Machines

A different motivation for the generalized hinge:

ŵ =

n∑
i=1

∑
`∈L

αi,` · φ(xi, `)

where most only a small number of αi,` are nonzero.

Those φ(xi, `) are called “support vectors” because they
“support” the decision boundary.

ŵ · φ(x, `′) =
∑

(i,`)∈S

αi,` · φ(xi, `) · φ(x, `′)

See Crammer and Singer (2001) for the multiclass version.

Really good tool: SVMlight, http://svmlight.joachims.org
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Support Vector Machines: Remarks

I Regularization is critical; squared `2 is most common, and
often used in (yet another) motivation around the idea of
“maximizing margin” around the hyperplane separator.

I Often, instead of linear models that explicitly calculate w · φ,
these methods are “kernelized” and rearrange all calculations
to involve inner-products between φ vectors.

I Example:

Klinear(v,w) = v ·w
Kpolynomial(v,w) = (v ·w + 1)

p

KGaussian(v,w) = exp−‖v −w‖22
2σ2

I Linear kernels are most common in NLP.
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General Remarks

I Text classification: many problems, all solved with supervised
learners.

I Lexicon features can provide problem-specific guidance.

I Näıve Bayes, log-linear, and SVM are all linear methods that
tend to work reasonably well, with good features and
smoothing/regularization.

I You should have a basic understanding of the tradeoffs in
choosing among them.

I Rumor: random forests are widely used in industry when
performance matters more than interpretability.

I Lots of papers about neural networks, but with
hyperparameter tuning applied fairly to linear models, the
advantage is not clear (Yogatama et al., 2015).
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Readings and Reminders

I Jurafsky and Martin (2015); Collins (2011)

I Submit a suggestion for an exam question by Friday at 5pm.
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