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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I log-linear: featurized representation of 〈hi, xi〉
Today: neural language models
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Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:
I A function family that maps parameter values to functions of

the form n : Rdin → Rdout ; typically:
I Non-linear
I Differentiable with respect to its inputs
I “Assembled” through a series of affine transformations and

non-linearities, composed together
I Symbolic inputs handled through lookups.

I Parameter values ν
I Typically a collection of scalars, vectors, and matrices
I We often assume they are linearized into RD
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A Couple of Useful Functions

I softmax : Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
I tanh : R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k.
I Others include: ReLUs, logistic sigmoids, PReLUs, . . .
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Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj

V

>V
V × d

Aj,∗,∗
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hj
V Tj,∗,∗

d×H


where each e∗ ∈ RV is a one-hot vector and H is the number of
“hidden units” in the neural network (a “hyperparameter”).

Parameters ν include:

I V ∈ RV×d, which are called “embeddings” (row vectors), one
for every word in V

I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V ,
W ∈ RV×H , u ∈ RH , T ∈ R(n−1)×d×H
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Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in V;
keep two copies.

ehj

V

>V
V × d

ehj

V

>V
V × d
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Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in V;
keep two copies. Rename the embedding for hj as vhj

.

ehj

>V = vhj

ehj

>V = vhj
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Breaking It Down

Apply an affine transformation to the second copy of the
history-word embeddings (u, T)

vhj

u
H

+

n−1∑
j=1

vhj
Tj,∗,∗

d×H
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Breaking It Down

Apply an affine transformation to the second copy of the
history-word embeddings (u, T) and a tanh nonlinearity.

vhj

tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗


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Breaking It Down

Apply an affine transformation to everything (b, A, W).

b
V

+

n−1∑
j=1

vhj
Aj,∗,∗

d× V

+ W
V ×H

tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗


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Breaking It Down

Apply a softmax transformation to make the vector sum to one.

softmax

 b +

n−1∑
j=1

vhj
Aj,∗,∗

+ W tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗


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Breaking It Down

softmax

 b +

n−1∑
j=1

vhj
Aj,∗,∗

+ W tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗


Like a log-linear language model with two kinds of features:

I Concatenation of context-word embeddings vectors vh∗

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine
transformation “inside” the nonlinearity.
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Visualization

V
u,
T

b, A

tanh

so
ftm
axW
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Number of Parameters

D = V d︸︷︷︸
V

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
I V ≈ 18000 (after OOV processing)
I d ∈ {30, 60}
I H ∈ {50, 100}
I n− 1 = 5

So D = 461V + 30100 parameters, compared to O(V n) for
classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a
bit better, but was slower to converge.

I If we averaged vh∗ instead of concatenating, we’d get to
221V + 6100 (this is a variant of “continuous bag of words,”
Mikolov et al., 2013).
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2.

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .
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xor Example

x1

x2

y

Correct tuples are marked in red; incorrect tuples are marked in
blue.
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .
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xor Example (D = 13)
Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)
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v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

>
(
W
3× 2

x
2

+ b
3

)
+ a

)2

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

> tanh

(
W
3× 2

x
2

+ b
3

)
+ a

)2
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .
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Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models.
ou should think of this as a generalization of the discrete view of
V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction
techniques for information retrieval-style querying of text
collections.

I Considerable ongoing research on learning word
representations to capture linguistic similarity (Turney and
Pantel, 2010); this is known as vector space semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic
theories, e.g., marking nouns as “animate” or not.
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Words as Vectors: Example

baby

cat
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Words as Vectors: Example

baby

cat

pig

mouse
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Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an
algorithm for estimating it.

I Calculating log-likelihood and its gradient is very expensive (5
epochs took 3 weeks on 40 CPUs).
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Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an
algorithm for estimating it.

I Calculating log-likelihood and its gradient is very expensive (5
epochs took 3 weeks on 40 CPUs).

Good news:

I νν is differentiable with respect to V (from which its inputs
come) and ν (its parameters), so gradient-based methods are
available.

Lots more details in Bengio et al. (2003) and (for NNs more
generally) in Goldberg (2015).
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What’s Coming Up

I The log-bilinear language model

I Recurrent neural network language models
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Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv′
d

+cv



I Number of parameters: D = V d︸︷︷︸
V

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector vv, not
just on the vectors of the history words.

I Training this model involves a sum over the vocabulary (like
log-linear models we saw last time).

I Later work explored variations to make learning faster (related
to class-based models we saw earlier).
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Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1
should generally be more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities
like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.
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should generally be more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities
like d and H.

I Parameters of these models are hard to interpret.
I Example: `2-norm of Aj,∗,∗ and Tj,∗,∗ in the feedforward

model correspond to the importance of history position j.
I Individual word embeddings can be clustered and dimensions

can be analyzed (e.g., Tsvetkov et al., 2015).

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.
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Recurrent Neural Network

I Each input element is understood to be an element of a
sequence: 〈x1,x2, . . . ,x`〉

I At each timestep t:
I The tth input element xt is processed alongside the previous

state st−1 to calculate the new state (st).
I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = frecurrent(xt, st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as
vectors (respectively, xt = ext and st).
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RNN Language Model

The original version, by Mikolov et al. (2010) used a “simple”
RNN architecture along these lines:

st = frecurrent(ext , st−1) = sigmoid

((
e>xt

V
)>

A+ s>t−1B+ c

)
yt = foutput(st) = softmax

(
s>t U

)
p(v | x1, . . . , xt−1) = [yt]v

Note: this is not an n-gram (Markov) model!
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Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to
propagate error into the distant past.

I State tends to change a lot on each iteration; the model
“forgets” too much.

Some variants:

I “Stacking” these functions to make deeper networks.

I Sundermeyer et al. (2012) use “long short-term memories”
(LSTMs) and Cho et al. (2014) use “gated recurrent units”
(GRUs) to define frecurrent.

I Mikolov et al. (2014) engineer the linear transformation in the
simple RNN for better preservation.

I Jozefowicz et al. (2015) used randomized search to find even
better architectures.
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Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist
What do we
engineer?

features,
assumptions

architectures

Theory? as N gets large not really

Interpretation of pa-
rameters?

often easy usually hard
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Parting Shots

I I said very little about estimating the parameters.

I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).
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Readings and Reminders

I Goldberg (2015), §0–4 and §10–13

I Possibly also useful (but not yet examined by me): Cho (2015)

I Submit a suggestion for an exam question by Friday at 5pm.
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