
Natural Language Processing (CSE 517):
Neural Language Models

Noah Smith
c© 2016

University of Washington
nasmith@cs.washington.edu

January 13, 2016

1 / 57

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I log-linear: featurized representation of 〈hi, xi〉
Today: neural language models

2 / 57

Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:
I A function family that maps parameter values to functions of

the form n : Rdin → Rdout ; typically:
I Non-linear
I Differentiable with respect to its inputs
I “Assembled” through a series of affine transformations and

non-linearities, composed together
I Symbolic inputs handled through lookups.

I Parameter values ν
I Typically a collection of scalars, vectors, and matrices
I We often assume they are linearized into RD

3 / 57

A Couple of Useful Functions

I softmax : Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
I tanh : R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k.
I Others include: ReLUs, logistic sigmoids, PReLUs, . . .

4 / 57

Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj

V

>V
V × d

Aj,∗,∗
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hj
V Tj,∗,∗

d×H


where each e∗ ∈ RV is a one-hot vector and H is the number of
“hidden units” in the neural network (a “hyperparameter”).

Parameters ν include:

I V ∈ RV×d, which are called “embeddings” (row vectors), one
for every word in V

I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V ,
W ∈ RV×H , u ∈ RH , T ∈ R(n−1)×d×H

5 / 57

Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in V;
keep two copies.

ehj

V

>V
V × d

ehj

V

>V
V × d

6 / 57

Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in V;
keep two copies. Rename the embedding for hj as vhj

.

ehj

>V = vhj

ehj

>V = vhj

7 / 57

Breaking It Down

Apply an affine transformation to the second copy of the
history-word embeddings (u, T)

vhj

u
H

+

n−1∑
j=1

vhj
Tj,∗,∗

d×H

8 / 57

Breaking It Down

Apply an affine transformation to the second copy of the
history-word embeddings (u, T) and a tanh nonlinearity.

vhj

tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗



9 / 57

Breaking It Down

Apply an affine transformation to everything (b, A, W).

b
V

+

n−1∑
j=1

vhj
Aj,∗,∗

d× V

+ W
V ×H

tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗



10 / 57

Breaking It Down

Apply a softmax transformation to make the vector sum to one.

softmax

 b +

n−1∑
j=1

vhj
Aj,∗,∗

+ W tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗



11 / 57

Breaking It Down

softmax

 b +

n−1∑
j=1

vhj
Aj,∗,∗

+ W tanh

 u +

n−1∑
j=1

vhj
Tj,∗,∗


Like a log-linear language model with two kinds of features:

I Concatenation of context-word embeddings vectors vh∗

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine
transformation “inside” the nonlinearity.

12 / 57

Visualization

V
u,
T

b, A

tanh

so
ftm
axW

13 / 57

Number of Parameters

D = V d︸︷︷︸
V

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
I V ≈ 18000 (after OOV processing)
I d ∈ {30, 60}
I H ∈ {50, 100}
I n− 1 = 5

So D = 461V + 30100 parameters, compared to O(V n) for
classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a
bit better, but was slower to converge.

I If we averaged vh∗ instead of concatenating, we’d get to
221V + 6100 (this is a variant of “continuous bag of words,”
Mikolov et al., 2013).

14 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2.

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

15 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2.

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

16 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2.

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

17 / 57

xor Example

x1

x2

y

Correct tuples are marked in red; incorrect tuples are marked in
blue.

18 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

19 / 57

xor Example (D = 13)
Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)

●

●●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●

0 5 10 15 20 25 30

0
1

2
3

4
5

iterations

m
ea

n
sq

ua
re

d
er

ro
r

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

>
(
W
3× 2

x
2

+ b
3

)
+ a

)2

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

> tanh

(
W
3× 2

x
2

+ b
3

)
+ a

)2

20 / 57

https://github.com/clab/cnn/blob/master/examples/xor.cc

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

21 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

22 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

23 / 57

Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Suppose y = xor(x1, x2); this can’t be expressed as a linear
function of x1 and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive
features to search through (recall from last time that Della
Pietra et al., 1997 did so, greedily).

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned to the prediction problem.

I Word embeddings: a powerful idea . . .

24 / 57

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models.
ou should think of this as a generalization of the discrete view of
V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction
techniques for information retrieval-style querying of text
collections.

I Considerable ongoing research on learning word
representations to capture linguistic similarity (Turney and
Pantel, 2010); this is known as vector space semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic
theories, e.g., marking nouns as “animate” or not.

25 / 57

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models.
You should think of this as a generalization of the discrete view of
V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction
techniques for information retrieval-style querying of text
collections.

I Considerable ongoing research on learning word
representations to capture linguistic similarity (Turney and
Pantel, 2010); this is known as vector space semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic
theories, e.g., marking nouns as “animate” or not.

26 / 57

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models.
You should think of this as a generalization of the discrete view of
V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction
techniques for information retrieval-style querying of text
collections.

I Considerable ongoing research on learning word
representations to capture linguistic similarity (Turney and
Pantel, 2010); this is known as vector space semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic
theories, e.g., marking nouns as “animate” or not.

27 / 57

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models.
You should think of this as a generalization of the discrete view of
V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction
techniques for information retrieval-style querying of text
collections.

I Considerable ongoing research on learning word
representations to capture linguistic similarity (Turney and
Pantel, 2010); this is known as vector space semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic
theories, e.g., marking nouns as “animate” or not.

28 / 57

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural
language models.
You should think of this as a generalization of the discrete view of
V.

I Why?

I Deerwester et al. (1990) explored dimensionality reduction
techniques for information retrieval-style querying of text
collections.

I Considerable ongoing research on learning word
representations to capture linguistic similarity (Turney and
Pantel, 2010); this is known as vector space semantics.

I Why “semantics”?

I Something like this also turns up in traditional linguistic
theories, e.g., marking nouns as “animate” or not.

29 / 57

Words as Vectors: Example

baby

cat

30 / 57

Words as Vectors: Example

baby

cat

pig

mouse

31 / 57

Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an
algorithm for estimating it.

I Calculating log-likelihood and its gradient is very expensive (5
epochs took 3 weeks on 40 CPUs).

32 / 57

Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model and an
algorithm for estimating it.

I Calculating log-likelihood and its gradient is very expensive (5
epochs took 3 weeks on 40 CPUs).

Good news:

I νν is differentiable with respect to V (from which its inputs
come) and ν (its parameters), so gradient-based methods are
available.

Lots more details in Bengio et al. (2003) and (for NNs more
generally) in Goldberg (2015).

33 / 57

What’s Coming Up

I The log-bilinear language model

I Recurrent neural network language models

34 / 57

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv′
d

+cv



I Number of parameters: D = V d︸︷︷︸
V

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector vv, not
just on the vectors of the history words.

I Training this model involves a sum over the vocabulary (like
log-linear models we saw last time).

I Later work explored variations to make learning faster (related
to class-based models we saw earlier).

35 / 57

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

V

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector vv, not
just on the vectors of the history words.

I Training this model involves a sum over the vocabulary (like
log-linear models we saw last time).

I Later work explored variations to make learning faster (related
to class-based models we saw earlier).

36 / 57

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

V

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector vv, not
just on the vectors of the history words.

I Training this model involves a sum over the vocabulary (like
log-linear models we saw last time).

I Later work explored variations to make learning faster (related
to class-based models we saw earlier).

37 / 57

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

V

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector vv, not
just on the vectors of the history words.

I Training this model involves a sum over the vocabulary (like
log-linear models we saw last time).

I Later work explored variations to make learning faster (related
to class-based models we saw earlier).

38 / 57

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
vhj

d

>Aj,∗,∗
d× d

+ b
d

>
)

vv′
d

+cv


I Number of parameters: D = V d︸︷︷︸

V

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector vv, not
just on the vectors of the history words.

I Training this model involves a sum over the vocabulary (like
log-linear models we saw last time).

I Later work explored variations to make learning faster (related
to class-based models we saw earlier).

39 / 57

Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1
should generally be more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities
like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

40 / 57

Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1
should generally be more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities
like d and H.

I Parameters of these models are hard to interpret.
I Example: `2-norm of Aj,∗,∗ and Tj,∗,∗ in the feedforward

model correspond to the importance of history position j.
I Individual word embeddings can be clustered and dimensions

can be analyzed (e.g., Tsvetkov et al., 2015).

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

41 / 57

Recurrent Neural Network

I Each input element is understood to be an element of a
sequence: 〈x1,x2, . . . ,x`〉

I At each timestep t:
I The tth input element xt is processed alongside the previous

state st−1 to calculate the new state (st).
I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = frecurrent(xt, st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as
vectors (respectively, xt = ext and st).

42 / 57

RNN Language Model

The original version, by Mikolov et al. (2010) used a “simple”
RNN architecture along these lines:

st = frecurrent(ext , st−1) = sigmoid

((
e>xt

V
)>

A+ s>t−1B+ c

)
yt = foutput(st) = softmax

(
s>t U

)
p(v | x1, . . . , xt−1) = [yt]v

Note: this is not an n-gram (Markov) model!

43 / 57

Visualization

V
A,
B,
c

sig
m

oid

so
ftm

ax

U

st - 1

44 / 57

Visualization

V
A,
B,
c

sig
m
oid

so
ftm
ax

U
V

A,
B,
c

sig
m
oid

so
ftm
ax

U
V

A,
B,
c

sig
m
oid

so
ftm
ax

U
V

A,
B,
c

sig
m
oid

so
ftm
ax

U

45 / 57

Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to
propagate error into the distant past.

I State tends to change a lot on each iteration; the model
“forgets” too much.

Some variants:

I “Stacking” these functions to make deeper networks.

I Sundermeyer et al. (2012) use “long short-term memories”
(LSTMs) and Cho et al. (2014) use “gated recurrent units”
(GRUs) to define frecurrent.

I Mikolov et al. (2014) engineer the linear transformation in the
simple RNN for better preservation.

I Jozefowicz et al. (2015) used randomized search to find even
better architectures.

46 / 57

Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist
What do we
engineer?

features,
assumptions

architectures

Theory? as N gets large not really

Interpretation of pa-
rameters?

often easy usually hard

47 / 57

Parting Shots

I I said very little about estimating the parameters.

I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

48 / 57

Parting Shots

I I said very little about estimating the parameters.

I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

49 / 57

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.

I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

50 / 57

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.

I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

51 / 57

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

52 / 57

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

53 / 57

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

I Next, we’ll let go of the text-as-sequence idea and think about
probabilistic models relating a word and its cotext (textual
context).

54 / 57

Readings and Reminders

I Goldberg (2015), §0–4 and §10–13

I Possibly also useful (but not yet examined by me): Cho (2015)

I Submit a suggestion for an exam question by Friday at 5pm.

55 / 57

References I

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3(Feb):
1137–1155, 2003. URL
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

Kyunghyun Cho. Natural language understanding with distributed representation,
2015. URL http://arxiv.org/pdf/1511.07916v1.pdf.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder–decoder for statistical machine translation. In Proc. of
EMNLP, 2014.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19
(4):380–393, 1997.

Yoav Goldberg. A primer on neural network models for natural language processing,
2015. URL http://u.cs.biu.ac.il/~yogo/nnlp.pdf.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of
recurrent network architectures. In Proc. of ICML, 2015. URL
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf.

56 / 57

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://arxiv.org/pdf/1511.07916v1.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

References II

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Proc. of
Interspeech, 2010. URL http://www.fit.vutbr.cz/research/groups/speech/

publi/2010/mikolov_interspeech2010_IS100722.pdf.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In Proceedings of ICLR, 2013. URL
http://arxiv.org/pdf/1301.3781.pdf.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio
Ranzato. Learning longer memory in recurrent neural networks, 2014.
arXiv:1412.7753.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language
modelling. In Proc. of ICML, 2007.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for
language modeling. In Proc. of Interspeech, 2012.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer.
Evaluation of word vector representations by subspace alignment. In Proc. of
EMNLP, 2015.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models
of semantics. Journal of Artificial Intelligence Research, 37(1):141–188, 2010.

57 / 57

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://arxiv.org/pdf/1301.3781.pdf

