Natural Language Processing (CSE 517): Neural Language Models

Noah Smith

© 2016

University of Washington nasmith@cs.washington.edu

January 13, 2016

Quick Review

A language model is a probability distribution over $\mathcal{V}^{\dagger}.$

Typically p decomposes into probabilities $p(x_i | \mathbf{h}_i)$.

- ▶ n-gram: h_i is (n-1) previous symbols
- ► class-based: further decomposition $p(x_i \mid \mathsf{cl}(x_i)) \cdot p(\mathsf{cl}(x_i) \mid \boldsymbol{h}_i)$
 - ightharpoonup previous (n-1) symbols' *classes* predict class of x_i
 - ightharpoonup class of x_i predicts x_i
- ▶ log-linear: featurized representation of $\langle \boldsymbol{h}_i, x_i \rangle$

Today: neural language models

Neural Network: Definitions

Warning: there is no widely accepted standard notation!

A feedforward neural network n_{ν} is defined by:

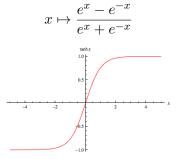
- ▶ A function family that maps parameter values to functions of the form $n: \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$; typically:
 - ► Non-linear
 - Differentiable with respect to its inputs
 - "Assembled" through a series of affine transformations and non-linearities, composed together
 - Symbolic inputs handled through lookups.
- ▶ Parameter values
 - Typically a collection of scalars, vectors, and matrices
 - lacktriangle We often assume they are linearized into \mathbb{R}^D

A Couple of Useful Functions

ightharpoonup softmax: $\mathbb{R}^k \to \mathbb{R}^k$

$$\langle x_1, x_2, \dots, x_k \rangle \mapsto \left\langle \frac{e^{x_1}}{\sum_{j=1}^k e^{x_j}}, \frac{e^{x_2}}{\sum_{j=1}^k e^{x_j}}, \dots, \frac{e^{x_k}}{\sum_{j=1}^k e^{x_j}} \right\rangle$$

 \blacktriangleright tanh : $\mathbb{R} \to [-1, 1]$



Generalized to be *elementwise*, so that it maps $\mathbb{R}^k \to [-1,1]^k$.

► Others include: ReLUs, logistic sigmoids, PReLUs, ...

Feedforward Neural Network Language Model (Bengio et al., 2003)

Define the n-gram probability as follows:

$$p(\cdot \mid \langle h_1, \dots, h_{\mathsf{n}-1} \rangle) = n_{\boldsymbol{\nu}} \left(\langle \mathbf{e}_{h_1}, \dots, \mathbf{e}_{h_{\mathsf{n}-1}} \rangle \right) =$$

$$\operatorname{softmax} \left(\underbrace{\mathbf{b}}_{v} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{e}_{h_j}^{\mathsf{T}} \underbrace{\mathbf{V}}_{v \times d} \underbrace{\mathbf{A}_{j,*,*}}_{d \times v} + \underbrace{\mathbf{W}}_{v \times H} \tanh \left(\underbrace{\mathbf{u}}_{H} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{e}_{h_j}^{\mathsf{T}} \mathbf{V} \underbrace{\mathbf{T}_{j,*,*}}_{d \times H} \right) \right)$$

where each $\mathbf{e}_* \in \mathbb{R}^V$ is a one-hot vector and H is the number of "hidden units" in the neural network (a "hyperparameter").

Parameters ν include:

- $\mathbf{V} \in \mathbb{R}^{V \times d}$, which are called "embeddings" (row vectors), one for every word in \mathcal{V}
- ► Feedforward NN parameters $\mathbf{b} \in \mathbb{R}^V$, $\mathbf{A} \in \mathbb{R}^{(\mathsf{n}-1)\times d\times V}$, $\mathbf{W} \in \mathbb{R}^{V\times H}$, $\mathbf{u} \in \mathbb{R}^H$, $\mathbf{T} \in \mathbb{R}^{(\mathsf{n}-1)\times d\times H}$

Look up each of the history words $h_j, \forall j \in \{1, ..., n-1\}$ in V; keep two copies.

Look up each of the history words $h_j, \forall j \in \{1, ..., n-1\}$ in \mathbf{V} ; keep two copies. Rename the embedding for h_i as \mathbf{v}_{h_i} .

$$\mathbf{e}_{h_j}^{\mathsf{T}} \mathbf{V} = \mathbf{v}_{h_j}$$
 $\mathbf{e}_{h_j}^{\mathsf{T}} \mathbf{V} = \mathbf{v}_{h_j}$

$$\mathbf{e}_{h_j}^{\mathsf{T}}\mathbf{V} = \mathbf{v}_{h_j}^{\mathsf{T}}$$

Apply an affine transformation to the second copy of the history-word embeddings (\mathbf{u}, \mathbf{T})

$$\mathbf{v}_{h_j} = \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \; \mathbf{T}_{j,*,*} = \sum_{d \times H} \mathbf{v}_{d \times H}$$

Apply an affine transformation to the second copy of the history-word embeddings (\mathbf{u}, \mathbf{T}) and a \tanh nonlinearity.

$$\tanh\left(\mathbf{u} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \ \mathbf{T}_{j,*,*}\right)$$

Apply an affine transformation to everything (b, A, W).

$$\begin{aligned} & \underset{v}{\mathbf{b}} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \, \, \underset{\scriptscriptstyle{d \times v}}{\mathbf{A}_{j,*,*}} \\ & + \underset{\scriptscriptstyle{v \times H}}{\mathbf{W}} \tanh \left(\, \underset{j=1}{\mathbf{u}} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \, \, \mathbf{T}_{j,*,*} \, \right) \end{aligned}$$

Apply a softmax transformation to make the vector sum to one.

softmax
$$\left(\mathbf{b} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \mathbf{A}_{j,*,*} + \mathbf{W} \tanh \left(\mathbf{u} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \mathbf{T}_{j,*,*}\right)\right)$$

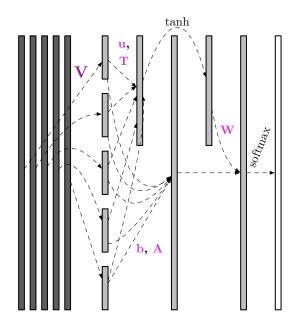
$$\operatorname{softmax} \left(\mathbf{b} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \ \mathbf{A}_{j,*,*} \right. \\ + \mathbf{W} \ \tanh \left(\mathbf{u} + \sum_{j=1}^{\mathsf{n}-1} \mathbf{v}_{h_j} \ \mathbf{T}_{j,*,*} \right) \right)$$

Like a log-linear language model with two kinds of features:

- ightharpoonup Concatenation of context-word embeddings vectors \mathbf{v}_{h_*}
- tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformation "inside" the nonlinearity.

Visualization



Number of Parameters

$$D = \underbrace{Vd}_{\mathbf{V}} + \underbrace{V}_{\mathbf{b}} + \underbrace{(\mathsf{n} - 1)dV}_{\mathbf{A}} + \underbrace{VH}_{\mathbf{W}} + \underbrace{H}_{\mathbf{u}} + \underbrace{(\mathsf{n} - 1)dH}_{\mathbf{T}}$$

For Bengio et al. (2003):

- $V \approx 18000$ (after OOV processing)
- ▶ $d \in \{30, 60\}$
- ▶ $H \in \{50, 100\}$
- ▶ n 1 = 5

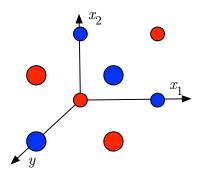
So D=461V+30100 parameters, compared to ${\cal O}(V^{\rm n})$ for classical n-gram models.

- Forcing A = 0 eliminated 300V parameters and performed a bit better, but was slower to converge.
- If we averaged \mathbf{v}_{h_*} instead of concatenating, we'd get to 221V+6100 (this is a variant of "continuous bag of words," Mikolov et al., 2013).

► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.

- ► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.
 - ▶ Suppose $y = xor(x_1, x_2)$; this can't be expressed as a linear function of x_1 and x_2 .

xor Example



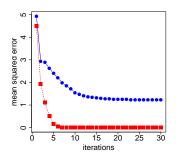
Correct tuples are marked in red; incorrect tuples are marked in blue.

- ► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.
 - ▶ Suppose $y = xor(x_1, x_2)$; this can't be expressed as a linear function of x_1 and x_2 . But:

$$z = x_1 \cdot x_2$$
$$y = x_1 + x_2 - 2z$$

xor Example (D = 13)

Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)



$$\min_{\mathbf{v}, a, \mathbf{W}, \mathbf{b}} \sum_{x_1 \in \{0, 1\}} \sum_{x_2 \in \{0, 1\}} \left(\operatorname{xor}(x_1, x_2) - \mathbf{v}^{\top} \left(\mathbf{W} \mathbf{x} + \mathbf{b} \right) + a \right)^2$$

$$\min_{\mathbf{v}, a, \mathbf{W}, \mathbf{b}} \sum_{x_1 \in \{0, 1\}} \sum_{x_2 \in \{0, 1\}} \left(\operatorname{xor}(x_1, x_2) - \mathbf{v}^{\top} \tanh \left(\mathbf{W} \mathbf{x} + \mathbf{b} \right) + a \right)^2$$

- ► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.
 - ▶ Suppose $y = xor(x_1, x_2)$; this can't be expressed as a linear function of x_1 and x_2 . But:

$$z = x_1 \cdot x_2$$
$$y = x_1 + x_2 - 2z$$

▶ With high-dimensional inputs, there are a lot of conjunctive features to search through (recall from last time that Della Pietra et al., 1997 did so, greedily).

- ► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.
 - ▶ Suppose $y = xor(x_1, x_2)$; this can't be expressed as a linear function of x_1 and x_2 . But:

$$z = x_1 \cdot x_2$$
$$y = x_1 + x_2 - 2z$$

- ► With high-dimensional inputs, there are a lot of conjunctive features to search through (recall from last time that Della Pietra et al., 1997 did so, greedily).
- Neural models seem to smoothly explore lots of approximately-conjunctive features.

- ► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.
 - ▶ Suppose $y = xor(x_1, x_2)$; this can't be expressed as a linear function of x_1 and x_2 . But:

$$z = x_1 \cdot x_2$$
$$y = x_1 + x_2 - 2z$$

- ► With high-dimensional inputs, there are a lot of conjunctive features to search through (recall from last time that Della Pietra et al., 1997 did so, greedily).
- Neural models seem to smoothly explore lots of approximately-conjunctive features.
- ► Modern answer: representations of words and histories are tuned to the prediction problem.

- ► Historical answer: multiple layers and nonlinearities allow feature *combinations* a linear model can't get.
 - Suppose $y = xor(x_1, x_2)$; this can't be expressed as a linear function of x_1 and x_2 . But:

$$z = x_1 \cdot x_2$$
$$y = x_1 + x_2 - 2z$$

- ► With high-dimensional inputs, there are a lot of conjunctive features to search through (recall from last time that Della Pietra et al., 1997 did so, greedily).
- Neural models seem to smoothly explore lots of approximately-conjunctive features.
- ► Modern answer: representations of words and histories are tuned to the prediction problem.
- Word embeddings: a powerful idea . . .

The idea of "embedding" words in \mathbb{R}^d is much older than neural language models.

ou should think of this as a generalization of the discrete view of \mathcal{V} .

The idea of "embedding" words in \mathbb{R}^d is much older than neural language models.

You should think of this as a generalization of the discrete view of \mathcal{V} .

► Why?

The idea of "embedding" words in \mathbb{R}^d is much older than neural language models.

You should think of this as a generalization of the discrete view of \mathcal{V} .

- ► Why?
- ▶ Deerwester et al. (1990) explored dimensionality reduction techniques for information retrieval-style querying of text collections.

The idea of "embedding" words in \mathbb{R}^d is much older than neural language models.

You should think of this as a generalization of the discrete view of \mathcal{V} .

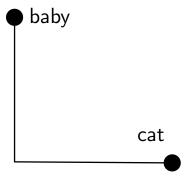
- ► Why?
- ▶ Deerwester et al. (1990) explored dimensionality reduction techniques for information retrieval-style querying of text collections.
- ► Considerable ongoing research on learning word representations to capture linguistic *similarity* (Turney and Pantel, 2010); this is known as **vector space semantics**.
 - ▶ Why "semantics"?

The idea of "embedding" words in \mathbb{R}^d is much older than neural language models.

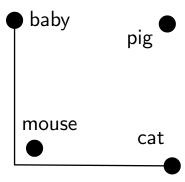
You should think of this as a generalization of the discrete view of \mathcal{V} .

- ► Why?
- ▶ Deerwester et al. (1990) explored dimensionality reduction techniques for information retrieval-style querying of text collections.
- ► Considerable ongoing research on learning word representations to capture linguistic *similarity* (Turney and Pantel, 2010); this is known as **vector space semantics**.
 - ▶ Why "semantics"?
- ► Something like this also turns up in traditional linguistic theories, e.g., marking nouns as "animate" or not.

Words as Vectors: Example



Words as Vectors: Example



Parameter Estimation

Bad news for neural language models:

- Log-likelihood function is not convex.
 - ► So any perplexity experiment is evaluating the model *and* an algorithm for estimating it.
- Calculating log-likelihood and its gradient is very expensive (5 epochs took 3 weeks on 40 CPUs).

Parameter Estimation

Bad news for neural language models:

- Log-likelihood function is not convex.
 - ► So any perplexity experiment is evaluating the model *and* an algorithm for estimating it.
- Calculating log-likelihood and its gradient is very expensive (5 epochs took 3 weeks on 40 CPUs).

Good news:

 $ightharpoonup
u_{
u}$ is differentiable with respect to V (from which its inputs come) and ν (its parameters), so gradient-based methods are available.

Lots more details in Bengio et al. (2003) and (for NNs more generally) in Goldberg (2015).

What's Coming Up

- ► The log-bilinear language model
- ► Recurrent neural network language models

Log-Bilinear Language Model

(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each $v \in \mathcal{V}$:

$$p(v \mid \langle h_1, \dots, h_{\mathsf{n}-1} \rangle) = \frac{\exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d} + c_v\right)}{\sum_{v' \in \mathcal{V}} \exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d'} + c_v\right)}$$

Log-Bilinear Language Model

(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each $v \in \mathcal{V}$:

$$p(v \mid \langle h_1, \dots, h_{\mathsf{n}-1}
angle) = rac{\exp\left(\sum\limits_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}^{\mathsf{T}}_{_d}\right) \mathbf{v}_v + c_v
ight)}{\sum\limits_{v' \in \mathcal{V}} \exp\left(\sum\limits_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}^{\mathsf{T}}_{_d}\right) \mathbf{v}_{v'} + c_v
ight)}$$

Number of parameters:
$$D = \underbrace{Vd}_{V} + \underbrace{(n-1)d^2}_{A} + \underbrace{d}_{b} + \underbrace{V}_{c}$$

Log-Bilinear Language Model

(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each $v \in \mathcal{V}$:

$$p(v \mid \langle h_1, \dots, h_{\mathsf{n}-1} \rangle) = \frac{\exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d} + c_v\right)}{\sum_{v' \in \mathcal{V}} \exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d'} + c_v\right)}$$

- Number of parameters: $D = \underbrace{Vd}_{V} + \underbrace{(\mathbf{n} 1)d^2}_{\mathbf{b}} + \underbrace{d}_{\mathbf{b}} + \underbrace{V}_{\mathbf{c}}$
- ▶ The predicted word's probability depends on its vector \mathbf{v}_v , not just on the vectors of the history words.

Log-Bilinear Language Model

(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each $v \in \mathcal{V}$:

$$p(v \mid \langle h_1, \dots, h_{\mathsf{n}-1} \rangle) = \frac{\exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d} + c_v\right)}{\sum_{v' \in \mathcal{V}} \exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d'} + c_v\right)}$$

- Number of parameters: $D = \underbrace{Vd}_{V} + \underbrace{(n-1)d^2}_{A} + \underbrace{d}_{b} + \underbrace{V}_{c}$
- ▶ The predicted word's probability depends on its vector \mathbf{v}_v , not just on the vectors of the history words.
- ► Training this model involves a sum over the vocabulary (like log-linear models we saw last time).

Log-Bilinear Language Model

(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each $v \in \mathcal{V}$:

$$p(v \mid \langle h_1, \dots, h_{\mathsf{n}-1} \rangle) = \frac{\exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d} + c_v\right)}{\sum_{v' \in \mathcal{V}} \exp\left(\sum_{j=1}^{\mathsf{n}-1} \left(\mathbf{v}_{h_j}^{\mathsf{T}} \mathbf{A}_{j,*,*} + \mathbf{b}_{_d}^{\mathsf{T}}\right) \mathbf{v}_{_d'} + c_v\right)}$$

- Number of parameters: $D = \underbrace{Vd}_{V} + \underbrace{(n-1)d^2}_{b} + \underbrace{d}_{b} + \underbrace{V}_{c}$
- ▶ The predicted word's probability depends on its vector \mathbf{v}_v , not just on the vectors of the history words.
- ► Training this model involves a sum over the vocabulary (like log-linear models we saw last time).
- ▶ Later work explored variations to make learning faster (related to class-based models we saw earlier).

Observations about Neural Language Models (So Far)

- ▶ There's no knowledge built in that the most recent word h_{n-1} should generally be more informative than earlier ones.
 - This has to be learned.
- ▶ In addition to choosing n, also have to choose dimensionalities like d and H.
- Parameters of these models are hard to interpret.
- Architectures are not intuitive.
- Still, impressive perplexity gains got people's interest.

Observations about Neural Language Models (So Far)

- ▶ There's no knowledge built in that the most recent word h_{n-1} should generally be more informative than earlier ones.
 - ► This has to be learned.
- ▶ In addition to choosing n, also have to choose dimensionalities like d and H.
- Parameters of these models are hard to interpret.
 - ▶ Example: ℓ_2 -norm of $\mathbf{A}_{j,*,*}$ and $\mathbf{T}_{j,*,*}$ in the feedforward model correspond to the importance of history position j.
 - ▶ Individual word embeddings can be clustered and dimensions can be analyzed (e.g., Tsvetkov et al., 2015).
- Architectures are not intuitive.
- ▶ Still, impressive perplexity gains got people's interest.

Recurrent Neural Network

- ▶ Each input element is understood to be an element of a sequence: $\langle \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell} \rangle$
- ► At each timestep *t*:
 - ▶ The tth input element \mathbf{x}_t is processed alongside the previous state \mathbf{s}_{t-1} to calculate the new **state** (\mathbf{s}_t) .
 - ▶ The tth output is a function of the state s_t .
 - ▶ The same functions are applied at each iteration:

$$\mathbf{s}_t = f_{\text{recurrent}}(\mathbf{x}_t, \mathbf{s}_{t-1})$$
$$\mathbf{y}_t = f_{\text{output}}(\mathbf{s}_t)$$

In RNN language models, words and histories are represented as vectors (respectively, $\mathbf{x}_t = \mathbf{e}_{x_t}$ and \mathbf{s}_t).

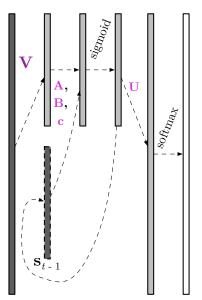
RNN Language Model

The original version, by Mikolov et al. (2010) used a "simple" RNN architecture along these lines:

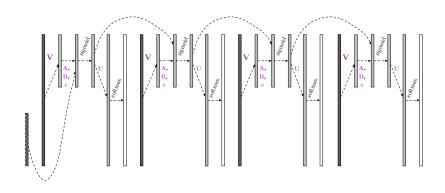
$$\mathbf{s}_{t} = f_{\text{recurrent}}(\mathbf{e}_{x_{t}}, \mathbf{s}_{t-1}) = \operatorname{sigmoid}\left(\left(\mathbf{e}_{x_{t}}^{\top}\mathbf{V}\right)^{\top}\mathbf{A} + \mathbf{s}_{t-1}^{\top}\mathbf{B} + \mathbf{c}\right)$$
$$\mathbf{y}_{t} = f_{\text{output}}(\mathbf{s}_{t}) = \operatorname{softmax}\left(\mathbf{s}_{t}^{\top}\mathbf{U}\right)$$
$$p(v \mid x_{1}, \dots, x_{t-1}) = [\mathbf{y}_{t}]_{v}$$

Note: this is not an n-gram (Markov) model!

Visualization



Visualization



Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

- "Vanishing gradients" during learning make it hard to propagate error into the distant past.
- State tends to change a lot on each iteration; the model "forgets" too much.

Some variants:

- "Stacking" these functions to make deeper networks.
- ▶ Sundermeyer et al. (2012) use "long short-term memories" (LSTMs) and Cho et al. (2014) use "gated recurrent units" (GRUs) to define $f_{\rm recurrent}$.
- ▶ Mikolov et al. (2014) engineer the linear transformation in the simple RNN for better preservation.
- ▶ Jozefowicz et al. (2015) used randomized search to find even better architectures.

Comparison: Probabilistic vs. Connectionist Modeling

	Probabilistic	Connectionist
What do we engineer?	features, assumptions	architectures
Theory?	as N gets large	not really
Interpretation of parameters?	often easy	usually hard

▶ I said very little about *estimating* the parameters.

- ▶ I said very little about *estimating* the parameters.
 - ▶ At present, this requires a lot of engineering.

- ▶ I said very little about *estimating* the parameters.
 - ► At present, this requires a lot of engineering.
 - ▶ New libraries to help you are coming out all the time.

- ▶ I said very little about *estimating* the parameters.
 - ► At present, this requires a lot of engineering.
 - ▶ New libraries to help you are coming out all the time.
 - ▶ Many of them use GPUs to speed things up.

- ▶ I said very little about *estimating* the parameters.
 - ► At present, this requires a lot of engineering.
 - ▶ New libraries to help you are coming out all the time.
 - ▶ Many of them use GPUs to speed things up.
- ► This progression is worth reflecting on:

	history:	represented as:
before 1996	(n-1)-gram	discrete
1996-2003		feature vector
2003-2010		embedded vector
since 2010	unrestricted	embedded

- ▶ I said very little about *estimating* the parameters.
 - ► At present, this requires a lot of engineering.
 - ▶ New libraries to help you are coming out all the time.
 - ▶ Many of them use GPUs to speed things up.
- ► This progression is worth reflecting on:

	history:	represented as:
before 1996	(n-1)-gram	discrete
1996-2003		feature vector
2003-2010		embedded vector
since 2010	unrestricted	embedded

Next, we'll let go of the text-as-sequence idea and think about probabilistic models relating a word and its cotext (textual context).

Readings and Reminders

- ► Goldberg (2015), §0–4 and §10–13
- ▶ Possibly also useful (but not yet examined by me): Cho (2015)
- ▶ Submit a suggestion for an exam question by Friday at 5pm.

References I

- Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. Journal of Machine Learning Research, 3(Feb): 1137-1155, 2003, URL
 - http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.
- Kyunghyun Cho. Natural language understanding with distributed representation, 2015. URL http://arxiv.org/pdf/1511.07916v1.pdf.
- Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. of EMNLP. 2014.
- Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407, 1990.
- Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (4):380-393, 1997.
- Yoav Goldberg. A primer on neural network models for natural language processing, 2015. URL http://u.cs.biu.ac.il/~yogo/nnlp.pdf.
- Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent network architectures. In Proc. of ICML, 2015. URL http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf.

References II

- Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural network based language model. In *Proc. of Interspeech*, 2010. URL http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In *Proceedings of ICLR*, 2013. URL http://arxiv.org/pdf/1301.3781.pdf.
- Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc'Aurelio Ranzato. Learning longer memory in recurrent neural networks, 2014. arXiv:1412.7753.
- Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language modelling. In *Proc. of ICML*, 2007.
- Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language modeling. In *Proc. of Interspeech*, 2012.
- Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer. Evaluation of word vector representations by subspace alignment. In *Proc. of EMNLP*, 2015.
- Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, 37(1):141–188, 2010.