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Very Quick Review of Probability

I Event space (e.g., X , Y)—in this class, usually discrete

I Random variables (e.g., X, Y )

I Typical statement: “random variable X takes value x ∈ X
with probability p(X = x), or, in shorthand, p(x)”

I Joint probability: p(X = x, Y = y)

I Conditional probability: p(X = x | Y = y)

I Always true: p(X = x, Y = y) = p(X = x | Y = y) · p(Y =
y) = p(Y = y | X = x) · p(X = x)

I Sometimes true: p(X = x, Y = y) = p(X = x) · p(Y = y)

I The difference between true and estimated probability
distributions
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Language Models: Definitions

I V is a finite set of (discrete) symbols (, “words” or possibly
characters); V = |V|

I V† is the (infinite) set of sequences of symbols from V whose
final symbol is 8

I p : V† → R, such that:
I For any x ∈ V†, p(x) ≥ 0

I
∑
x∈V†

p(x) = 1

! (I.e., p is a proper probability distribution.)
More careful r.v. notation: p(X = x)

Language modeling: estimate p from examples, x1:n.
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really
necessary?

3. Is “finite V” realistic?

11 / 65



Motivation: Noisy Channel Models
A pattern for modeling a pair of random variables, X and Y :

source −→ Y −→ channel −→ X

I Y is the plaintext, the true message, the missing information,
the output

I X is the ciphertext, the garbled message, the observable
evidence, the input

I Decoding: select y given X = x.

y∗ = argmax
y

p(y | x)

= argmax
y

p(x | y) · p(y)

p(x)

= argmax
y

p(x | y)︸ ︷︷ ︸
channel model

· p(y)︸︷︷︸
source model
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Noisy Channel Example: Speech Recognition

source −→ sequence in V† −→ channel −→ acoustics

I Acoustic model defines p(sounds | x) (channel)

I Language model defines p(x) (source)
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Noisy Channel Example: Speech Recognition
Credit: Luke Zettlemoyer

word sequence log p(acoustics | word sequence)

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station ’s signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station ’s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815
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Noisy Channel Example: Machine Translation

Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which I
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When I look at an article in
Russian, I say: “This is really written in English, but it
has been coded in some strange symbols. I will now
proceed to decode.”

Warren Weaver, 1955
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Noisy Channel Examples

I Speech recognition

I Machine translation

I Optical character recognition

I Spelling and grammar correction
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“Conditional” Language Models

Instead of p(X), model p(X | Context).

I Context could be an input (acoustics, source-language
sentence, image of text) . . . or it could be something else
(visual input, stock prices, . . . )

I Made possible by advances in machine learning!
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really
necessary?

3. Is “finite V” realistic?
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Evaluation: Perplexity

Intuitively, language models should assign high probability to real
language they have not seen before.
For out-of-sample (“held-out” or “test”) data x̄1:m:

I Probability of x̄1:m is
m∏
i=1

p(x̄i)

I Log-probability of x̄1:m is
m∑
i=1

log2 p(x̄i)

I Average log-probability per word of x̄1:m is

l =
1

M

m∑
i=1

log2 p(x̄i)

if M =
∑m

i=1 |x̄|i
I Perplexity (relative to x̄1:m) is 2−l
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Understanding Perplexity

2

− 1

M

m∑
i=1

log2 p(x̄i)

It’s a branching factor!

I Assign probability of 1 to the test data ⇒ perplexity = 1

I Assign probability of 1
|V| to every word ⇒ perplexity = |V|

I Assign probability of 0 to anything ⇒ perplexity = ∞
I This motivates a stricter constraint than we had before:

I For any x ∈ V†, p(x) > 0
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Perplexity

I Perplexity on conventionally accepted test sets is often
reported in papers.

I Generally, I won’t discuss perplexity numbers much, because:
I Perplexity is only an intermediate measure of performance.
I Understanding the models is more important than

remembering how well they perform on particular train/test
sets.

I If you’re curious, look up numbers in the literature; always
take them with a grain of salt!
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really
necessary?

3. Is “finite V” realistic?
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Is “finite V” realistic?

No
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Is “finite V” realistic?

No
no
n0
-no

notta
No

/no
//no
(no
|no
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The Language Modeling Problem

Input: x1:n (“training data”)
Output: p : V† → R+

, p should be a “useful” measure of plausibility (not
grammaticality).
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A Trivial Language Model

p(x) =
|{i | xi = x}|

n

=
cx1:n(x)

n
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A Trivial Language Model

p(x) =
|{i | xi = x}|

n

=
cx1:n(x)

n

What if x is not in the training data?
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Using the Chain Rule

p(X = x) =


p(X1 = x1)
· p(X2 = x2 | X1 = x1)
· p(X3 = x3 |X1:2 = x1:2)
...
· p(X` = 8 |X1:`−1 = x1:`−1)


=
∏̀
j=1

p(Xj = xj |X1:j−1 = x1:j−1)
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Unigram Model

p(X = x) =
∏̀
j=1

p(Xj = xj |X1:j−1 = x1:j−1)

assumption
=

∏̀
j=1

p(Xj = xj)

Modeled by:

pθ(x) =
∏̀
j=1

θxj

where θ ∈ 4|V|.

Maximum likelihood estimate:

∀v ∈ V, θ̂v =
|{i, j | [xi]j = v}|

N

=
cx1:n(v)

N

where N =
∑n

i=1 |xi|.
Also known as “relative
frequency estimation.”

36 / 65



37 / 65



Unigram Model

p(X = x) =
∏̀
j=1

p(Xj = xj |X1:j−1 = x1:j−1)

assumption
=

∏̀
j=1

p(Xj = xj)

Modeled by:

pθ(x) =
∏̀
j=1

θxj

where θ ∈ 4|V|.

Maximum likelihood estimate:

∀v ∈ V, θ̂v =
|{i, j | [xi]j = v}|

N

=
cx1:n(v)

N

where N =
∑n

i=1 |xi|.
Also known as “relative
frequency estimation.”

38 / 65



Relative Frequency Estimation is the MLE
(Unigram Model)

The maximum likelihood estimation problem:

max
θ∈4|V|

pθ(x1:n)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Logarithm is a monotonic function.

max
θ∈4|V|

pθ(x1:n) = exp max
θ∈4|V|

log pθ(x1:n)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Each sequence is an independent sample from the model.

max
θ∈4|V|

log pθ(x1:n) = max
θ∈4|V|

log

n∏
i=1

pθ(xi)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in the form of the unigram model.

max
θ∈4|V|

log

n∏
i=1

pθ(xi) = max
θ∈4|V|

log

n∏
i=1

`i∏
j=1

θ[xi]j
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Relative Frequency Estimation is the MLE
(Unigram Model)

Log of product equals sum of logs.

max
θ∈4|V|

log

n∏
i=1

`i∏
j=1

θ[xi]j = max
θ∈4|V|

n∑
i=1

`i∑
j=1

log θ[xi]j
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert from tokens to types.

max
θ∈4|V|

n∑
i=1

`i∑
j=1

log θ[xi]j = max
θ∈4|V|

∑
v∈V

cx1:n(v) log θv
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert to a minimization problem (for consistency with
textbooks).

max
θ∈4|V|

∑
v∈V

cx1:n(v) log θv = min
θ∈4|V|

−
∑
v∈V

cx1:n(v) log θv
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Relative Frequency Estimation is the MLE
(Unigram Model)

Lagrange multiplier to convert to a less constrained problem.

min
θ∈4|V|

−
∑
v∈V

cx1:n(v) log θv

= max
µ≥0

min
θ∈R|V|≥0

−
∑
v∈V

cx1:n(v) log θv − µ

(
1−

∑
v∈V

θv

)

= min
θ∈R|V|≥0

max
µ≥0
−
∑
v∈V

cx1:n(v) log θv − µ

(
1−

∑
v∈V

θv

)

Intuitively, if
∑
v∈V

θv gets too big, µ will push toward +∞.

For more about Lagrange multipliers, see Dan Klein’s tutorial (reference at the end of

these slides).
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for θ in terms of µ.

min
θ∈R|V|≥0

max
µ≥0
−
∑
v∈V

cx1:n(v) log θv − µ

(
1−

∑
v∈V

θv

)

fixing µ, for all v, set: 0 =
∂

∂θv

=
−cx1:n(v)

θv
+ µ

θv =
cx1:n(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for each θv.

min
θ∈R|V|≥0

max
µ≥0
−
∑
v∈V

cx1:n(v) log θv − µ

(
1−

∑
v∈V

θv

)

= max
µ≥0
−
∑
v∈V

cx1:n(v) log
cx1:n(v)

µ
− µ

(
1−

∑
v∈V

cx1:n(v)

µ

)

Remember: ∀v ∈ V, θv =
cx1:n(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Rearrange terms (a log a
b = a log a− a log b and N =

∑
v∈V

cx1:n(v)).

max
µ≥0
−
∑
v∈V

cx1:n(v) log
cx1:n(v)

µ
− µ

(
1−

∑
v∈V

cx1:n(v)

µ

)
= max

µ≥0
−
∑
v∈V

cx1:n(v) log cx1:n(v) +N logµ− µ+N

Remember: ∀v ∈ V, θv =
cx1:n(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for µ.

max
µ≥0
−
∑
v∈V

cx1:n(v) log cx1:n(v) +N logµ− µ+N

set: 0 =
∂

∂µ

=
N

µ
− 1

µ = N

Remember: ∀v ∈ V, θv =
cx1:n(v)

µ
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for µ.

max
µ≥0
−
∑
v∈V

cx1:n(v) log cx1:n(v) +N logµ− µ+N

= −
∑
v∈V

cx1:n(v) log cx1:n(v) +N logN

∀v ∈ V, θv =
cx1:n(v)

µ
=
cx1:n(v)

N

... and that’s the relative frequency estimate!
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Unigram Models: Assessment

Pros:

I Easy to understand

I Cheap

I Good enough for
information retrieval
(maybe)

Cons:

I “Bag of words” assumption
is linguistically inaccurate

I p(the the the the)�
p(I want ice cream)

I Data sparseness; high
variance in the estimator

I “Out of vocabulary”
problem
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Markov Models ≡ n-gram Models

p(X = x) =
∏̀
j=1

p(Xj = xj |X1:j−1 = x1:j−1)

assumption
=

∏̀
j=1

p(Xj = xj |Xj−n+1:j−1 = xj−n+1:j−1)

(n− 1)th-order Markov assumption ≡ n-gram model

I Unigram model is the n = 1 case

I For a long time, trigram models (n = 3) were widely used

I 5-gram models (n = 5) are not uncommon now in MT
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Estimating n-Gram Models

unigram bigram trigram

pθ(x) =
∏̀
j=1

θxj
∏̀
j=1

θxj |xj−1

∏̀
j=1

θxj |xj−2xj−1

Parameters: θv θv|v′ θv|v′′v′

∀v ∈ V ∀v ∈ V, v′ ∈ V ∪ {©} ∀v ∈ V, v′, v′′ ∈ V ∪ {©}

MLE:
c(v)

N

c(v′v)

c(v′)

c(v′′v′v)

c(v′′v′)

General case:∏̀
j=1

θxj |xj−n+1:j−1
θv|h, ∀v ∈ V,h ∈ (V ∪ {©})n−1

c(hv)

c(h)
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The Problem with MLE

I The curse of dimensionality: the number of parameters grows
exponentially in n

I Data sparseness: most n-grams will never be observed, even if
they are linguistically plausible

I No one actually uses the MLE!
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Smoothing

A few years ago, I’d have spent a whole lecture on this! /
I Simple method: add λ > 0 to every count (including

zero-counts) before normalizing

I What makes it hard: ensuring that each θ ∈ 4|V|
I Otherwise, perplexity calculations break

I Longstanding champion: modified Kneser-Ney smoothing
(Chen and Goodman, 1998)

I Stupid backoff: reasonable, easy solution when you don’t care
about perplexity (Brants et al., 2007)
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Interpolation

If p and q are both language models, then so is

αp+ (1− α)q

for any α ∈ [0, 1].

I This idea underlies many smoothing methods

I Often a new model q only beats a reigning champion p when
interpolated with it

I How to pick α?
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Algorithms To Know

I Score a sentence x

I Train from a corpus x1:n

I Sample a sentence given θ
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n-gram Models: Assessment

Pros:

I Easy to understand

I Cheap (with modern
hardware; Lin and Dyer,
2010)

I Good enough for machine
translation, speech
recognition, . . .

Cons:

I Markov assumption is
linguistically inaccurate

I (But not as bad as
unigram models!)

I Data sparseness; high
variance in the estimator

I “Out of vocabulary”
problem
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Class-Based Language Models
Brown et al. (1992)

Suppose we have a hard clustering of V, cl : V → {1, . . . , k},
where k � |V|.

n-gram class-based

pθ(x) =
∏̀
j=1

θxj |xj−n+1:j−1

∏̀
j=1

θxj |cl(xj)γcl(xj)|cl(xj−1)

Parameters: θv|h θv|cl(v) γi|j
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀v ∈ V ∀i, j ∈ {1, . . . , k}

MLE:
c(hv)

c(h)

c(v)

c(cl(v))

c(j)

c(ji)
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Language Models as (Weighted) Finite-State Automata

(Deterministic) finite-state automaton:
I Set of k states S

I Initial state s0 ∈ S
I Final states F ⊆ S

I Alphabet Σ

I Transitions δ : S × Σ→ S
A length ` string x is in the language of the automaton iff there is
a path 〈s0, . . . , s`〉 such that s` ∈ F and

∧̀
i=1

[[si = δ(si−1, xi)]]
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Language Models as (Weighted) Finite-State Automata
(Deterministic) finite-state automaton:

I Set of k states S histories
I Initial state s0 ∈ S ©
I Final states F ⊆ S histories ending in 8

I Alphabet Σ V
I Transitions δ : S × Σ→ S ×R>0

A weighted FSA defines a weight for every transition; e.g.,
w(h, v, δ(h, v)) = θv|h

A length ` string x is in the language of the automaton iff there is
a path 〈s0, . . . , s`〉 such that s` ∈ F and∧̀

i=1

[[si = δ(si−1, xi)]]

The score of the string is the product of transition weights.

score(x)
∏̀
i=1

w(hi, xi, δ(hi, xi))

62 / 65



Dealing with Out-of-Vocabulary Terms

I Define a special OOV or “unknown” symbol unk. Transform
some (or all) rare words in the training data to unk.

I / You cannot fairly compare two language models that apply
different unk treatments!

I Build a language model at the character level.
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Readings and Reminders

I Collins (2011); Jurafsky and Martin (2015)

I Submit a suggestion for an exam question by Friday at 5pm.

I Noah’s office hours: Friday 1:30–2:30 in CSE 532.
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