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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I Probabilities are estimated from data.
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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I Probabilities are estimated from data.

Today: log-linear language models
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What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).
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What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

Central idea today: teach histories and words how to share.
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Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events (, for language modeling, V)

I X is the set of contexts (, for n-gram language modeling,
Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

“Log-linear” comes from the fact that:

log pw(Y = y | X = x) = w · φ(x, y)− Zw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models.
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Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) = expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called
multinomial logistic regression.
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Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)
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Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)

Alternately:

I d = |V|n

I φh̃,ṽ(h, v) =

{
1 if h = h̃ ∧ v = ṽ
0 otherwise

I wh̃,ṽ = log c(h̃ṽ)

c(h̃)

I Z(h) = 1
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)
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Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

w · φ = w1φ1 + w2φ2 = 0

21 / 64



The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

p(y3 | x) > p(y1 | x) > p(y4 | x) > p(y2 | x)

22 / 64



The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

23 / 64



The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

p(y3 | x) > p(y1 | x) > p(y2 | x) > p(y4 | x)
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Why Build Language Models This Way?

I Exploit features of histories for sharing of statistical strength
and better smoothing (Lau et al., 1993)

I Condition the whole text on more interesting things
(Eisenstein et al., 2011)

I Interpretability!
I Each feature φk controls a factor to the probability (ewk); wk

is the ceteris parebis log-odds.
I If wk < 0 then φk makes the event less likely.
I If wk > 0 then φk makes the event more likely.
I If wk = 0 then φk has no effect.

25 / 64



Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj |X1:j−1 = x1:j−1)

=
∏̀
j=1

expw · φ(x1:j−1, xj)

Zw(x1:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)

Zw(hj)
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Example

The man who knew too

much
many
little
few

...
hippopotamus
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What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”
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“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.
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How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)

Zw(hj)

Parameters: θv|h wk

∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE:
c(hv)

c(h)
no closed form
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MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.
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MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.
I Zw(hi) involves a sum over V terms.

I Neat trick (Goodman, 2001): class-based model!
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MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)
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MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

Hope/fear view: for each instance i,

I increase the score of the correct output xi,
score(xi) = w · φ(hi, xi)

I decrease the “average” score overall, log
∑

v∈V exp score(v)
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MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

Gradient view:

N∑
i=1

φ(hi, xi)− Epw(X|hi)[φ(hi, X)]

Setting this to zero means getting model’s expectations to match
empirical expectations.
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MLE for w: Algorithms

I Batch methods (L-BFGS is popular)

I Stochastic gradient descent more common today, especially
with special tricks for adapting the step size over time

I Many specialized methods (e.g., “iterative scaling”)
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing wj toward +∞.
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing wj toward +∞.

Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.
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`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑

j=1

|wj |

I This results in sparsity (i.e., many wj = 0).

I Many have argued that this is a good thing (Tibshirani, 1996);
it’s a kind of feature selection.

I Do not confuse it with data sparseness (a problem to be
overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and

Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.
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MLE for w

If we had five more weeks, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form; you must use a numerical
optimization algorithm.

I Log-linear models are powerful but expensive (Zw(hi)).
I Regularization is very important; we don’t actually do MLE.

I Just like for n-gram models! Only even more so, since
log-linear models are even more expressive.
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Maximum Entropy

Consider a distribution p over events in X . The Shannon entropy
(in bits) of p is defined as:

H(p) = −
∑
x∈X

p(X = x)

{
0 if p(X = x) = 0
log2 p(X = x) otherwise

This is a measure of “randomness”; entropy is zero when p is
deterministic and log |X | when p is uniform.

Maximum entropy principle: among distributions that fit the data,
pick the one with the greatest entropy.
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Maximum Entropy

If “fit the data” is taken to mean

∀k ∈ {1, . . . , d},Ep[φk] = Ẽ[φk]

then the MLE of the log-linear family with features φ is the
maximum entropy solution.

This is why log-linear models are sometimes called “maxent”
models (e.g., Berger et al., 1996)
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“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a
single log-linear model over event space V†:

pw(x) =
expw · φ(x)

Zw

I Any feature of the sentence could be included in this model!

I Zw is deceptively simple-looking!

Zw =
∑
x∈V†

expw · φ(x)
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Readings and Reminders

Collins (2011) §2
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