
Natural Language Processing (CSE 517):
Featurized Language Models

Noah Smith
c© 2016

University of Washington
nasmith@cs.washington.edu

January 11, 2016

1 / 64

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I Probabilities are estimated from data.

2 / 64

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I Probabilities are estimated from data.
I Why?

3 / 64

Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I n-gram: hi is (n− 1) previous symbols
I class-based: further decomposition
p(xi | cl(xi)) · p(cl(xi) | hi)

I previous (n− 1) symbols’ classes predict class of xi
I class of xi predicts xi

I Probabilities are estimated from data.

Today: log-linear language models

4 / 64

What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

5 / 64

What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

Central idea today: teach histories and words how to share.

6 / 64

Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events (, for language modeling, V)

I X is the set of contexts (, for n-gram language modeling,
Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)

7 / 64

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

8 / 64

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

9 / 64

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

10 / 64

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

11 / 64

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

“Log-linear” comes from the fact that:

log pw(Y = y | X = x) = w · φ(x, y)− Zw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models.

12 / 64

Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) = expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called
multinomial logistic regression.

13 / 64

Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) = expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)
= logit−1 (w · (φ(x,+1)− φ(x,−1)))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called
multinomial logistic regression.

14 / 64

Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) = expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)
= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called
multinomial logistic regression.

15 / 64

Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) = expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)
= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called
multinomial logistic regression.

16 / 64

Special Case: Logistic Regression
Consider the case where Y = {+1,−1}.

pw(Y = +1 | x) = expw · φ(x,+1)

expw · φ(x,+1) + expw · φ(x,−1)
= logit−1 (w · (φ(x,+1)− φ(x,−1)))
notation change

= logit−1 (w · f(x))

I Should be familiar, if you know about logistic regression.

I When Y = {1, 2, . . . , k}, log-linear models are often called
multinomial logistic regression.

17 / 64

Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)

18 / 64

Special Case: n-Gram Language Model

Consider an n-gram language model, where X = Vn−1 and Y = V.
Let:

I d = 1

I φ1(h, v) = log c(hv)

I w1 = 1

I Z(h) =
∑
v′∈V

exp log c(hv′) =
∑
v′∈V

c(hv′) = c(h)

Alternately:

I d = |V|n

I φh̃,ṽ(h, v) =

{
1 if h = h̃ ∧ v = ṽ
0 otherwise

I wh̃,ṽ = log c(h̃ṽ)

c(h̃)

I Z(h) = 1

19 / 64

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

20 / 64

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

w · φ = w1φ1 + w2φ2 = 0

21 / 64

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

p(y3 | x) > p(y1 | x) > p(y4 | x) > p(y2 | x)

22 / 64

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

23 / 64

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are
only two features, φ1 and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)
(x, y2)

p(y3 | x) > p(y1 | x) > p(y2 | x) > p(y4 | x)

24 / 64

Why Build Language Models This Way?

I Exploit features of histories for sharing of statistical strength
and better smoothing (Lau et al., 1993)

I Condition the whole text on more interesting things
(Eisenstein et al., 2011)

I Interpretability!
I Each feature φk controls a factor to the probability (ewk); wk

is the ceteris parebis log-odds.
I If wk < 0 then φk makes the event less likely.
I If wk > 0 then φk makes the event more likely.
I If wk = 0 then φk has no effect.

25 / 64

Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj |X1:j−1 = x1:j−1)

=
∏̀
j=1

expw · φ(x1:j−1, xj)

Zw(x1:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)

Zw(hj)

26 / 64

Example

The man who knew too

much
many
little
few

...
hippopotamus

27 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

28 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

29 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

30 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

31 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

32 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

33 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very
low counts, can help.

I Too few (good) features, and your model will not learn /

34 / 64

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very
low counts, can help.

I Too few (good) features, and your model will not learn /

35 / 64

“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.

36 / 64

“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.

37 / 64

“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.

38 / 64

“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.

39 / 64

“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.

40 / 64

“Feature Engineering”

I Many advances in NLP (not just language modeling) have
come from careful design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della
Pietra et al., 1997).

I More recent work in neural networks can be seen as
discovering features (instead of engineering them).

I But in NLP, there’s a strong preference for interpretable
features.

41 / 64

How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)

Zw(hj)

Parameters: θv|h wk

∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE:
c(hv)

c(h)
no closed form

42 / 64

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

43 / 64

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

44 / 64

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

45 / 64

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

46 / 64

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.
I Zw(hi) involves a sum over V terms.

I Neat trick (Goodman, 2001): class-based model!

47 / 64

MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

48 / 64

MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

Hope/fear view: for each instance i,

I increase the score of the correct output xi,
score(xi) = w · φ(hi, xi)

I decrease the “average” score overall, log
∑

v∈V exp score(v)

49 / 64

MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

Gradient view:

N∑
i=1

φ(hi, xi)− Epw(X|hi)[φ(hi, X)]

Setting this to zero means getting model’s expectations to match
empirical expectations.

50 / 64

MLE for w: Algorithms

I Batch methods (L-BFGS is popular)

I Stochastic gradient descent more common today, especially
with special tricks for adapting the step size over time

I Many specialized methods (e.g., “iterative scaling”)

51 / 64

Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing wj toward +∞.

52 / 64

Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing wj toward +∞.

Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.

53 / 64

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑

j=1

|wj |

I This results in sparsity (i.e., many wj = 0).

I Many have argued that this is a good thing (Tibshirani, 1996);
it’s a kind of feature selection.

I Do not confuse it with data sparseness (a problem to be
overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and

Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

54 / 64

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑

j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.

I Do not confuse it with data sparseness (a problem to be
overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and

Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

55 / 64

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑

j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and

Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

56 / 64

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑

j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at wj = 0.

I Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

57 / 64

`1 Regularization
This case warrants a little more discussion:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖1

Note that:

‖w‖1 =
d∑

j=1

|wj |

I This results in sparsity (i.e., many wj = 0).
I Many have argued that this is a good thing (Tibshirani, 1996);

it’s a kind of feature selection.
I Do not confuse it with data sparseness (a problem to be

overcome)!

I This is not differentiable at wj = 0.
I Optimization: special solutions for batch (e.g., Andrew and

Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

58 / 64

MLE for w

If we had five more weeks, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form; you must use a numerical
optimization algorithm.

I Log-linear models are powerful but expensive (Zw(hi)).
I Regularization is very important; we don’t actually do MLE.

I Just like for n-gram models! Only even more so, since
log-linear models are even more expressive.

59 / 64

Maximum Entropy

Consider a distribution p over events in X . The Shannon entropy
(in bits) of p is defined as:

H(p) = −
∑
x∈X

p(X = x)

{
0 if p(X = x) = 0
log2 p(X = x) otherwise

This is a measure of “randomness”; entropy is zero when p is
deterministic and log |X | when p is uniform.

Maximum entropy principle: among distributions that fit the data,
pick the one with the greatest entropy.

60 / 64

Maximum Entropy

If “fit the data” is taken to mean

∀k ∈ {1, . . . , d},Ep[φk] = Ẽ[φk]

then the MLE of the log-linear family with features φ is the
maximum entropy solution.

This is why log-linear models are sometimes called “maxent”
models (e.g., Berger et al., 1996)

61 / 64

“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a
single log-linear model over event space V†:

pw(x) =
expw · φ(x)

Zw

I Any feature of the sentence could be included in this model!

I Zw is deceptively simple-looking!

Zw =
∑
x∈V†

expw · φ(x)

62 / 64

Readings and Reminders

Collins (2011) §2

63 / 64

References I
Galen Andrew and Jianfeng Gao. Scalable training of `1-regularized log-linear models.

In Proc. of ICML, 2007.

Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71,
1996.

Michael Collins. Log-linear models, MEMMs, and CRFs, 2011. URL
http://www.cs.columbia.edu/~mcollins/crf.pdf.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of
random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19
(4):380–393, 1997.

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. Sparse additive generative models of
text. In Proc. of ICML, 2011.

Joshua Goodman. Classes for fast maximum entropy training. In Proc. of ICASSP,
2001.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated
gradient. In NIPS, 2009.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language models:
A maximum entropy approach. In Proc. of ICASSP, 1993.

Roni Rosenfeld. Adaptive Statistical Language Modeling: A Maximum Entropy
Approach. PhD thesis, Carnegie Mellon University, 1994.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

64 / 64

http://www.cs.columbia.edu/~mcollins/crf.pdf

