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Quick Review

A language model is a probability distribution over V†.

Typically p decomposes into probabilities p(xi | hi).

I We considered n-gram, class-based, log-linear, and neural
language models.

Today: probabilistic models that relate a word and its cotext (the
linguistic environment of the word).

I This might help us learn to represent words, contexts, or both.
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be
the observed value of a random variable Xi, what other random
variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of
other words)

2. the words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i)

3. a sentence known to be a translation of the one containing i
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be
the observed value of a random variable Xi, what other random
variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of
other words) −→ topic models

2. the words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i)
−→ distributional semantics

3. a sentence known to be a translation of the one containing i
−→ translation models

7 / 48



Topic Models

I Words are not IID!
I Predictable given history: n-gram/Markov models
I Predictable given other words in the document: topic models

I Let Z = {1, . . . , k} be a set of “topics” or “themes” that will
help us capture the interdependence of words in a document.

I Usually these are not named or characterized in advance; they
are just k different values with no a priori meaning.

I We’ll start with a classical topic model, then turn to
probabilistic ones.
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The Term-Document Matrix
Let A ∈ RV×C contain statistics of association between words in
V and C documents. N is the total number of word tokens.

Tiny example, three documents:

I yes , we have no bananas

I say yes for bananas

I no bananas , we say

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0

have 1 0 0
no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

Count matrix: [A]v,c = cxc(v)
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Association Score

What we really want here is some way to get at “surprise.”
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Association Score

What we really want here is some way to get at “surprise.”

One way to think about this is, is the occurrence of word v in
document c surprisingly high (or low), given what we’d expect due
to chance?

Chance would be
cx1:C

(v)

N words out of the `c words in document c.

Intuition: consider the ratio of observed frequency (cxc(v)) to

“chance” under independence (
cx1:C

(v)

N · `c).
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Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

cxc(v)
cx1:C

(v)

N · `c

]
+

=

[
log

N · cxc(v)

cx1:C (v) · `c

]
+

From our example:

[A]bananas,1 = log
15 · 1
3 · 6

≈ −0.18→ 0

[A]for,2 = log
15 · 1
1 · 4

≈ 1.32

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0

have 1 0 0
no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0
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A Nod to Information Theory

Pointwise mutual information for two random variables A and B:

PMI(a, b) = log
p(A = a,B = b)

p(A = a) · p(B = b)

= log
p(A = a | B = b)

p(A = a)

= log
p(B = b | A = a)

p(B = b)
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A Nod to Information Theory

Pointwise mutual information for two random variables A and B:

PMI(a, b) = log
p(A = a,B = b)

p(A = a) · p(B = b)

The average mutual information is given by:

MI(A,B) =
∑
a,b

p(A = a,B = b) · PMI(a, b)

This comes from information theory; it is the amount of
information each r.v. offers about the other.

(Recall Shannon entropy; that’s the amount of information in a
single random variable.)
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Pointwise Mutual Information
A common starting point is positive pointwise mutual
information:

[A]v,c =

[
log

cxc(v)
cx1:C

(v)

N · `c

]
+

=

[
log

N · cxc(v)

cx1:C (v) · `c

]
+

Notes:
I If a word v appears with nearly the same frequency in every

document, its row [A]v,∗ will be all nearly zero.

I If a word v occurs only in document c, PMI will be large and
positive.

I PMI is very sensitive to rare occurrences; usually we smooth
the frequencies and filter rare words.

I One way to think about PMI: it’s telling us where a unigram
model is most wrong.

I We could use A as V (though d is usually much smaller than
C) . . .
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Topic Models: Latent Semantic Indexing/Analysis
(Deerwester et al., 1990)

LSI/A seeks to solve:

A
V × C

≈ Â =V
V × d

× diag
d× d

(s)× C
d× C

>

where V contains embeddings of words, C contains embeddings of
documents.

[A]v,c ≈
d∑

i=1

[vv]i · [s]i · [cc]i
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Topic Models: Latent Semantic Indexing/Analysis
(Deerwester et al., 1990)

LSI/A seeks to solve:

A
V × C

≈ Â =V
V × d

× diag
d× d

(s)× C
d× C

>

where V contains embeddings of words, C contains embeddings of
documents.

[A]v,c ≈
d∑

i=1

[vv]i · [s]i · [cc]i

This can be solved by applying singular value decomposition to A,
then truncating to d dimensions.

I V contains left singular vectors of A

I C contains right singular vectors of A

I s are singular values of A; they are nonnegative and
conventionally organized in decreasing order.
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Truncated Singular Value Decomposition

diag(s)V
C⊤

A
=

diag(s)

V

C⊤

Â =

truncated at k:

SVD:
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A Nod to Linear Algebra

For (not truncated) singular value decomposition
A = V × diag(s)×C>:

I The columns of V form an orthonormal basis, V are
eigenvectors of AA>, with eigenvalues s2.

I The columns of C form an orthonormal basis, C are
eigenvectors of A>A, with eigenvalues s2.

If some elements of s are zero, then A is “low rank.”

Approximating A by truncating s equates to a “low rank
approximation.”
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LSI/A Example
d = 2

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

,

bananas
for

have

no

say

we

yes

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0
have 1 0 0

no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

Words and documents in two dimensions.
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-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

,

bananas
for

have

no

say

we

yes

1 2 3
, 1 0 1

bananas 1 1 1
for 0 1 0
have 1 0 0

no 1 0 1
say 0 1 1
we 1 0 1
yes 1 1 0

Words and documents in two dimensions.
Note how no, we, and , are all in the exact same spot. Why?
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Understanding LSI/A

I Mapping words and documents into the same k-dimensional
space.

I Bag of words assumption (Salton et al., 1975): a document is
nothing more than the distribution of words it contains.

I Distributional hypothesis (Harris, 1954; Firth, 1957): words
are nothing more than the distribution of contexts (here,
documents) they occur in. Words that occur in similar
contexts have similar meanings.

I A is sparse and noisy; LSI/A “fills in” the zeroes and tries to
eliminate the noise.

I It finds the best rank-k approximation to A.
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Probabilistic Topic Models

As a language model, LSI/A is kind of broken.

I It assumes the elements of A are the result of Gaussian noise.

Hofmann (1999) proposed instead to model the probability
distribution p(Xc = xc | c), for each document c in the corpus C.

I This is a particular kind of conditional language model.
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Probabilistic Latent Semantic Analysis
(Hofmann, 1999)

Given a corpus C, for every c ∈ C:

p(x | c) =
∑

z∈{1,...,k}`
p(x, z | c)

p(x, z | c) =
∏̀
i=1

p(zi | c) · p(xi | zi)

=
∏̀
i=1

γzi|c θxi|zi

Parameters:

I γz|c, ∀z ∈ {1, . . . , k},∀c ∈ C

I θv|z, ∀v ∈ V,∀z ∈ {1, . . . , k}

There is no closed form for the MLE!
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“Graphical Model” Depiction of PLSA

x1,1 x1,2 x1,3 x1,4

!

unigram

x1,1 x1,2 x1,3 x1,4

!

PLSA z1,1 z1,2 z1,3 z1,4

γ1

x2,1

x2,2

x2,3

z2,1

z2,2

z2,3

γ2

x2,1

x2,2

x2,3
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A Chicken/Egg Problem

If we knew which topic each word token belonged to (i.e., which
unigram distribution generated it), we could use relative frequency
estimation.

If we knew the parameters γ and θ, we could infer the topic of
each word (i.e., which unigram distribution generated it).
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“Soft Counts”

Assume for the moment a single document c of length `.

When we estimated unigram language models, everything relied on
counts of words.

Here, if we knew the counts of every word in every topic in every
document, then we’d have a closed form MLE.

γ̂z|c =
c(z, ∗)
`

θ̂v|z =
c(z, v)

c(z, ∗)
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“Soft Counts”
Assume for the moment a single document c of length `.

When we estimated unigram language models, everything relied on
counts of words.

Here, if we knew the counts of every word in every topic in every
document, then we’d have a closed form MLE.

γ̂z|c =
c(z, ∗)
`

θ̂v|z =
c(z, v)

c(z, ∗)

Instead, we will replace counts with “soft counts.”

γ̂z|c =
c̃(z, ∗)
`

θ̂v|z =
c̃(z, v)

c̃(z, ∗)
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Expectation Maximization

Many ways to understand it. Today, we’ll stick with a simple one.

Start with arbitrary (e.g., random) parameter values. Alternate
between two steps:

I E step: calculate the posterior distribution over each latent
variable.

I M step: treat the posteriors as soft counts, and re-estimate
the model.

Doing this is a kind of hill-climbing on the likelihood of the
observed data.
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PLSA: M Step

Each word xi is fractionally assigned to every topic z with value
c̃c(z, xi).

γ̂z|c =
c̃c(z)

`c
=

∑
v∈V

c̃c(z, v)

`c

θ̂v|z =

∑
c∈C

c̃c(z, v)∑
c∈C

c̃c(z)
=

∑
c∈C

c̃c(z, v)∑
c∈C

∑
v∈V

c̃c(z, v)

Note that the θ parameters are shared across C; all of the
documents influence our beliefs about the others through θ.
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PLSA: E Step
Assume we have the parameters:

I γz|c, ∀z ∈ {1, . . . , k},∀c ∈ C
I θv|z, ∀v ∈ V,∀z ∈ {1, . . . , k}

Calculate, for every c ∈ C, for every word xi in c, its “membership”
to every topic:

p(Zi = z | xi, c) =
p(xi, z | c)∑
z′ p(xi, z

′ | c)

=
p(z | c) · p(xi | z)∑
z′ p(z

′ | c) · p(xi | z′)

=
γz|c · θxi|z∑
z′ γz′|c · θxi|z′

Each word gets to vote on topics; it can spread its vote fractionally
across Z, but the votes sum to 1.
These get summed into soft counts:

c̃c(z, v) =
∑

i:xi=v

p(Zi = z | xi, c)
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EM for PLSA

x1 x2 x3 x4

!

z1 z2 z3 z4

γ

x1 x2 x3 x4

!

z1 z2 z3 z4

γ
M step: E step:

Red indicates what is operated on in each step; everything else is
held fixed.
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Expectation Maximization

Very general technique for learning with incomplete data. It’s been
invented over and over in different fields.

Requires that you specify a generative model with two kinds of
variables: observed (here, documents and words in each
document), and latent (here, topic for each word).

Like gradient ascent for neural networks, we are (usually)
optimizing a non-convex function. Many tricks exist to try to cope
with that.

In NLP, often associated with unsupervised learning. We will see it
again!
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Remarks

I Like LSI/A, PLSA “squeezes” the relationship between words
and contexts (documents) through topics.

I A document is now characterized as a mixture of
corpus-universal topics (each of which is a unigram model).

I Topic mixtures can be incorporated into language models; see
Iyer and Ostendorf (1999), for example.

I Compared to LSI/A: PLSA is more interpretable (e.g., LSI/A
can give negative values!).

I PLSA cannot assign probability to a text not in C; it only
defines conditional distributions over words given texts in C.

I The next model overcomes this problem by adding another
level of randomness: γ becomes a random variable, not a
parameter.
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Latent Dirichlet Allocation
(Blei et al., 2003)

Widely used today.

p(x) =

∫
γ

∑
z∈{1,...,k}`

p(x, z,γ) dγ

p(x, z,γ) = Dirα(γ)
∏̀
i=1

γzi θxi|zi

Parameters:

I α ∈ Rk
>0

I θ∗|z ∈ 4V , ∀z ∈ {1, . . . , k}

There is no closed form for the MLE!
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“Being Bayesian”

This is another topic that could warrant an entire quarter (e.g.,
http://homepages.inf.ed.ac.uk/scohen/bayesian)

A summary of the Bayesian philosophy in NLP:

I Because we have finite data, we should be uncertain about
every estimated model parameter.

I Bayes’ rule gives us a way to manage that uncertainty, if we
can define a prior distribution over model parameters.

I Inference is a “simple matter” of estimating posterior
distributions.

I But exact inference is almost never tractable, so we need
approximations.

I There are many of these, and they tend to be expensive.
I Some of them look like EM, some don’t.
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Understanding LDA
Models with k = 3 (left) and k = 2 (right):

v1

v2v3

γ1

γ2
γ3

v1

v2v3

γ1

γ2

I LDA estimates a posterior distribution in the “topic simplex”
for each document (and its vertices).

I PLSA places each document at one point in the topic simplex.
I Unigram model estimates one “topic” for the whole corpus.
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LDA

Topics discovered by LDA-like models continue to be interesting:
I As a way of interacting with and exploring large corpora

without reading them.
I But this is hard to evaluate!

I As a “pivot” for relating to other variables like author
(Rosen-Zvi et al., 2004), geography (Eisenstein et al., 2010),
and many more.

LDA is also extremely useful as a pedagogical gateway to Bayesian
modeling of text (and other discrete data).

I It’s right on the boundary between “easy” and “hard”
Bayesian models.
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Readings and Reminders

I Turney and Pantel (2010) §1–4

I Submit a suggestion for an exam question by Friday at 5pm.

I Form your project team by Wednesday 1/27.

I Project details will be finalized early next week.
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