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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be
the observed value of a random variable Xi, what other random
variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of
other words)

2. the words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i)

3. a sentence known to be a translation of the one containing i
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be
the observed value of a random variable Xi, what other random
variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of
other words) −→ topic models

2. the words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i)
−→ distributional semantics

3. a sentence known to be a translation of the one containing i
−→ translation models
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Local Contexts: Distributional Semantics

Within NLP, emphasis has shifted from topics to the relationship
between v ∈ V and more local contexts.

For example: LSI/A, but replace documents with “nearby words.”
This is a way to recover word vectors that capture distributional
similarity.

These models are designed to “guess” a word at position i given a
word at a position in [i− w, i− 1] ∪ [i+ 1, i+ 2].

Sometimes such methods are used to “pre-train” word vectors used
in other, richer models (like neural language models).
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Word2vec
(Mikolov et al., 2013a,b)

Two models for word vectors designed to be computationally
efficient.

I Continuous bag of words (CBOW): p(v | c)
I Similar in spirit to the feedforward neural language model we

saw last time (Bengio et al., 2003)

I Skip-gram: p(c | v)

It turns out these are closely related to matrix factorization as in
LSI/A (Levy and Goldberg, 2014)!
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Skip-Gram Model

p(C = c | X = v) =
1

Zv
exp c>c vv

I Two different vectors for each element of V: one when it is
“v” (v) and one when it is “c” (c).

I Like the log-bilinear model we saw last time, normalization
term Zv is expensive, so approximations are required for
efficiency.

I Can expand this to be over the whole sentence or document,
or otherwise choose which words “count” as context.
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Word Vector Evaluations
See http://wordvectors.org for a suite of examples.

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

min
v∈V

cos (vv,vwalking − vwalked + veating)
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Word Vector Evaluations
See http://wordvectors.org for a suite of examples.

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?→ {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

min
v∈V

cos (vv,vwalking − vwalked + veating)

Also: extrinsic evaluations on NLP tasks that can use word vectors
(e.g., sentiment analysis).
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An Older Approach to Word Representation

Recall the class-based bigram model:

p(xi | xi−1) = p(xi | zi) · p(zi | zi−1)
= θxi|zi · γzi|zi−1

p(x, z) = πz0
∏̀
i=1

θxi|zi · γzi|zi−1

This is like a topic model where topic distributions are bigram
distributed!

If we treat each z as latent—like in a topic model—we get to
something very famous, called the hidden Markov model (HMM).
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Comparing Five Models
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Brown Clustering

There is a whole lot more to say about HMMs, which we’ll save for
later.

Brown et al. (1992) focused on the case where each v ∈ V is
constrained to belong to only one cluster, cl(v).

They developed a greedy way to cluster words hierarchically.
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Brown Clustering: Sketch of the Algorithm

Given: k (the desired number of clusters)

I Initially, every word v belongs to its own cluster.
I Repeat V − k times:

I Find the pairwise merge that gives the greatest value for
p(x1:n, z1:n).

It turns out this is equivalent to PMI for adjacent cluster values!

This is very expensive; Brown et al. (1992) and others (later)
introduced tricks for efficiency. See Liang (2005) and Stratos et al.
(2014), for example.
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Added Bonus to Brown Clusters

If you keep track of every merge, you have a hierarchical clustering.

Each cluster is a binary tree with words at the leaves and internal
nodes corresponding to merges.

Indexing the merge-pairs by 0 and 1 gives a bit-string for each
word; prefixes of each word’s bit string correspond to the
hierarchical clusters it belongs to.

These can be seen as word embedings!
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Brown Clusters from 56,000,000 Tweets
http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html
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Three Kinds of Cotext

If we consider a word token at a particular position i in text to be
the observed value of a random variable Xi, what other random
variables are predictive of/related to Xi?

1. the document containing i (a moderate-to-large collection of
other words) −→ topic models

2. the words that occur within a small “window” around i (e.g.,
xi−2, xi−1, xi+1, xi+2, or maybe the sentence containing i)
−→ distributional semantics

3. a sentence known to be a translation of the one containing i
−→ translation models
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Bitext

Let f and e be two sequences in V† (French) and V̄† (English),
respectively.

We’re going to define p(F | e), the probability over French
translations of English sentence e.

In a noisy channel machine translation system, we could use this
together with source/language model p(e) to “decode” f into an
English translation.

Where does the data to estimate this come from?
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IBM Model 2
(Brown et al., 1993)

Let ` and m be the (known) lengths of e and f .

Latent variable a = 〈a1, . . . , am〉, each ai ranging over {0, . . . , `}
(positions in e).

I E.g., a4 = 3 means that f4 is “aligned” to e3.

p(f | e,m) =
∑

a∈{0,...,n}m
p(f ,a | e,m)

p(f ,a | e,m) =

m∏
i=1

p(ai | i, `,m) · p(fi | eai)

= δai|i,`,m · θfi|eai
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IBM Model 2, Depicted
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Parameter Estimation

Use EM!

E step: calculate posteriors over all ai, and then soft counts (left
as an exercise: what soft counts do you need?)

M step: use relative frequency estimation from soft counts to get δ
and θ
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Variations

I IBM Model 1 is the same, but fixes δj|i,`,m = 1
`+1 .

I Log-likelihood is convex!
I Often used to initialize IBM Model 2.

I Dyer et al. (2013) introduced a new parameterization:

δj|i,`,m ∝ exp−λ
∣∣∣∣ im − j

`

∣∣∣∣
(This is called fast align.)

I IBM Models 3–5 (Brown et al., 1993) introduced increasingly
more powerful ideas, such as “fertility” and “distortion.”
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Wow! That was a lot of models!

We covered:

I Topic models: LSI/A, PLSA, LDA

I Distributional semantics models: Skip-gram, Brown clustering

I Translation models: IBM 1 and 2

All of them are probabilistic models that capture patterns of
cooccurrence between words and cotext.

They do not have: morphology (word-guts), syntax (sentence
structure), or translation dictionaries . . .
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Readings and Reminders

I Collins (2011)

I Submit a suggestion for an exam question by Friday at 5pm.

I Form your project team by Wednesday 1/27.

I Project details will be finalized this week.
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