Natural Language Processing (CSE 517): Cotext Models (II)

Noah Smith
© 2016

University of Washington
nasmith@cs.washington.edu

January 25, 2016

Thanks to David Mimno for comments.
Three Kinds of Cotext

If we consider a word token at a particular position \(i \) in text to be the observed value of a random variable \(X_i \), what other random variables are predictive of/related to \(X_i \)?

1. the document containing \(i \) (a moderate-to-large collection of other words)
2. the words that occur within a small “window” around \(i \) (e.g., \(x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2} \), or maybe the sentence containing \(i \))
3. a sentence known to be a translation of the one containing \(i \)
Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the observed value of a random variable X_i, what other random variables are predictive of/related to X_i?

1. the document containing i (a moderate-to-large collection of other words)
Three Kinds of Cotext

If we consider a word token at a particular position \(i \) in text to be the observed value of a random variable \(X_i \), what other random variables are predictive of/related to \(X_i \)?

1. the document containing \(i \) (a moderate-to-large collection of other words)

2. the words that occur within a small “window” around \(i \) (e.g., \(x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2} \), or maybe the sentence containing \(i \)
Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the observed value of a random variable X_i, what other random variables are predictive of/related to X_i?

1. the document containing i (a moderate-to-large collection of other words)
2. the words that occur within a small “window” around i (e.g., $x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2}$, or maybe the sentence containing i)
3. a sentence known to be a translation of the one containing i
Three Kinds of Cotext

If we consider a word token at a particular position i in text to be the observed value of a random variable X_i, what other random variables are predictive of/related to X_i?

1. the document containing i (a moderate-to-large collection of other words) \rightarrow topic models

2. the words that occur within a small “window” around i (e.g., $x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2}$, or maybe the sentence containing i) \rightarrow distributional semantics

3. a sentence known to be a translation of the one containing i \rightarrow translation models
Local Contexts: Distributional Semantics

Within NLP, emphasis has shifted from topics to the relationship between $v \in \mathcal{V}$ and more local contexts.

For example: LSI/A, but replace documents with “nearby words.” This is a way to recover word vectors that capture distributional similarity.

These models are designed to “guess” a word at position i given a word at a position in $[i - w, i - 1] \cup [i + 1, i + 2]$.

Sometimes such methods are used to “pre-train” word vectors used in other, richer models (like neural language models).
Word2vec
(Mikolov et al., 2013a,b)

Two models for word vectors designed to be computationally efficient.

- Continuous bag of words (CBOW): $p(v \mid c)$
 - Similar in spirit to the feedforward neural language model we saw last time (Bengio et al., 2003)

- Skip-gram: $p(c \mid v)$

It turns out these are closely related to matrix factorization as in LSI/A (Levy and Goldberg, 2014)!
Skip-Gram Model

\[p(C = c \mid X = v) = \frac{1}{Z_v} \exp c^T v \]

- Two different vectors for each element of \(\mathcal{V} \): one when it is “v” (\(v \)) and one when it is “c” (\(c \)).
- Like the log-bilinear model we saw last time, normalization term \(Z_v \) is expensive, so approximations are required for efficiency.
- Can expand this to be over the whole sentence or document, or otherwise choose which words “count” as context.
Word Vector Evaluations

See http://wordvectors.org for a suite of examples.

Several popular methods for *intrinsic* evaluations:

▶ Do (cosine) similarities of pairs of words' vectors correlate with judgments of similarity by humans?

▶ TOEFL-like synonym tests, e.g., rug → {sofa, ottoman, carpet, hallway}

▶ Syntactic analogies, e.g., "walking is to walked as eating is to what?" Solved via:

\[
\min_{v \in V} \cos (v_{\text{walking}} - v_{\text{walked}} + v_{\text{eating}})
\]
Word Vector Evaluations

See http://wordvectors.org for a suite of examples.

Several popular methods for *intrinsic* evaluations:

- Do (cosine) similarities of pairs of words’ vectors correlate with judgments of similarity by humans?

 ▶ TOEFL-like synonym tests, e.g., `rug` → `{sofa, ottoman, carpet, hallway}`

 ▶ Syntactic analogies, e.g., "walking is to walked as eating is to what?" Solved via:

 \[
 \min_{v \in V} \cos(v_w, v_{\text{walking}} - v_{\text{walked}} + v_{\text{eating}})
 \]
Word Vector Evaluations

See http://wordvectors.org for a suite of examples.

Several popular methods for \textit{intrinsic} evaluations:

- Do (cosine) similarities of pairs of words’ vectors correlate with judgments of similarity by humans?
- TOEFL-like synonym tests, e.g., \textit{rug} \rightarrow $\{\text{sofa, ottoman, carpet, hallway}\}$
Word Vector Evaluations

See http://wordvectors.org for a suite of examples.

Several popular methods for *intrinsic* evaluations:

- Do (cosine) similarities of pairs of words’ vectors correlate with judgments of similarity by humans?
- TOEFL-like synonym tests, e.g., *rug* → \{*sofa, ottoman, carpet, hallway*\}
- Syntactic analogies, e.g., “*walking* is to *walked* as *eating* is to what?” Solved via:

\[
\min_{v \in V} \cos \left(v, v_{\text{walking}} - v_{\text{walked}} + v_{\text{eating}} \right)
\]
Word Vector Evaluations

See http://wordvectors.org for a suite of examples.

Several popular methods for *intrinsic* evaluations:

- Do (cosine) similarities of pairs of words’ vectors correlate with judgments of similarity by humans?
- TOEFL-like synonym tests, e.g., *rug* $\rightarrow \{\text{sofa, ottoman, carpet, hallway}\}$
- Syntactic analogies, e.g., “*walking* is to *walked* as *eating* is to what?” Solved via:

$$\min_{v \in V} \cos (v_v, v_{\text{walking}} - v_{\text{walked}} + v_{\text{eating}})$$

Also: *extrinsic* evaluations on NLP tasks that can use word vectors (e.g., sentiment analysis).
Recall the class-based bigram model:

\[
p(x_i \mid x_{i-1}) = p(x_i \mid z_i) \cdot p(z_i \mid z_{i-1})
\]

\[
= \theta_{x_i \mid z_i} \cdot \gamma_{z_i \mid z_{i-1}}
\]

\[
p(x, z) = \pi_{z_0} \prod_{i=1}^{\ell} \theta_{x_i \mid z_i} \cdot \gamma_{z_i \mid z_{i-1}}
\]

This is like a topic model where topic distributions are **bigram** distributed!

If we treat each \(z\) as latent—like in a topic model—we get to something very famous, called the **hidden Markov model** (HMM).
Comparing Five Models

- **unigram**
 - x_1, x_2, x_3, x_4

- **bigram (Markov)**
 - x_1, x_2, x_3, x_4

- **class-based bigram**
 - z_1, z_2, z_3, z_4

- **PLSA and LDA (topics)**
 - z_1, z_2, z_3, z_4

- **hidden Markov model**
 - x_1, x_2, x_3, x_4
Brown Clustering

There is a whole lot more to say about HMMs, which we’ll save for later.

Brown et al. (1992) focused on the case where each $v \in V$ is constrained to belong to only one cluster, $\text{cl}(v)$.

They developed a greedy way to cluster words hierarchically.
Brown Clustering: Sketch of the Algorithm

Given: k (the desired number of clusters)

- Initially, every word v belongs to its own cluster.
- Repeat $V - k$ times:
 - Find the pairwise merge that gives the greatest value for $p(x_{1:n}, z_{1:n})$.

It turns out this is equivalent to PMI for adjacent cluster values!

This is very expensive; Brown et al. (1992) and others (later) introduced tricks for efficiency. See Liang (2005) and Stratos et al. (2014), for example.
If you keep track of every merge, you have a *hierarchical* clustering.

Each cluster is a binary tree with words at the leaves and internal nodes corresponding to merges.

Indexing the merge-pairs by 0 and 1 gives a bit-string for each word; prefixes of each word’s bit string correspond to the hierarchical clusters it belongs to.

These can be seen as word embedings!
Brown Clusters from 56,000,000 Tweets

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html
Three Kinds of Context

If we consider a word token at a particular position \(i \) in text to be the observed value of a random variable \(X_i \), what other random variables are predictive of/related to \(X_i \)?

1. the document containing \(i \) (a moderate-to-large collection of other words) → topic models
2. the words that occur within a small “window” around \(i \) (e.g., \(x_{i-2}, x_{i-1}, x_{i+1}, x_{i+2} \), or maybe the sentence containing \(i \)) → distributional semantics
3. a sentence known to be a translation of the one containing \(i \) → translation models
Let \(f \) and \(e \) be two sequences in \(\mathcal{V}^\dagger \) (French) and \(\mathcal{\bar{V}}^\dagger \) (English), respectively.

We’re going to define \(p(F \mid e) \), the probability over French translations of English sentence \(e \).

In a noisy channel machine translation system, we could use this together with source/language model \(p(e) \) to “decode” \(f \) into an English translation.

Where does the data to estimate this come from?
Let ℓ and m be the (known) lengths of e and f.

Latent variable $\mathbf{a} = \langle a_1, \ldots, a_m \rangle$, each a_i ranging over $\{0, \ldots, \ell\}$ (positions in e).

- E.g., $a_4 = 3$ means that f_4 is “aligned” to e_3.

\[
p(f \mid e, m) = \sum_{\mathbf{a} \in \{0, \ldots, n\}^m} p(f, \mathbf{a} \mid e, m)
\]

\[
p(f, \mathbf{a} \mid e, m) = \prod_{i=1}^{m} p(a_i \mid i, \ell, m) \cdot p(f_i \mid e_{a_i})
\]

\[
= \delta_{a_i \mid i, \ell, m} \cdot \theta_{f_i \mid e_{a_i}}
\]
IBM Model 2, Depicted

PLSA and LDA (topics)

hidden Markov model

IBM 2
Parameter Estimation

Use EM!

E step: calculate posteriors over all a_i, and then soft counts (left as an exercise: what soft counts do you need?)

M step: use relative frequency estimation from soft counts to get δ and θ
Variations

- IBM Model 1 is the same, but fixes $\delta_{j|i,\ell,m} = \frac{1}{\ell+1}$.
 - Log-likelihood is convex!
 - Often used to initialize IBM Model 2.
- Dyer et al. (2013) introduced a new parameterization:
 $$\delta_{j|i,\ell,m} \propto \exp(-\lambda \left| \frac{i}{m} - \frac{j}{\ell} \right|)$$
 (This is called fast_align.)
- IBM Models 3–5 (Brown et al., 1993) introduced increasingly more powerful ideas, such as “fertility” and “distortion.”
Wow! That was a lot of models!

We covered:

▶ Topic models: LSI/A, PLSA, LDA
▶ Distributional semantics models: Skip-gram, Brown clustering
▶ Translation models: IBM 1 and 2

All of them are probabilistic models that capture patterns of cooccurrence between words and context.

They do not have: morphology (word-guts), syntax (sentence structure), or translation dictionaries . . .
Readings and Reminders

- Collins (2011)
- Submit a suggestion for an exam question by Friday at 5pm.
- Form your project team by Wednesday 1/27.
- Project details will be finalized this week.

