Natural Language Processing (CSE 517):
Sequence Models (1)

Noah Smith
© 2016

University of Washington
nasmith@cs.washington.edu

February 1, 2016

Where We Are

v

Language models

Text classification

v

v

Linguistic analysis

Generation

v

N

53

Linguistic Analysis: Overview

Every linguistic analyzer is comprised of:
1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V' to some output space V.
> In this class, I'll start with abstract algorithms applicable to
many problems.
3. An implementation of the algorithm
» Once upon a time: rule systems and crafted rules
» Most common now: supervised learning from annotated data
» Frontier: less supervision (semi-, un-, distant, ...)

53

Sequence Labeling

After text classification (VT — L), the next simplest type of output
is a sequence labeling.

<$15$23"° 7':Cf> = <?/1,y27~-,y€>

Every word (or character) gets a label in L.
Example problems:

» part-of-speech tagging (Church, 1988)

» spelling correction (Kernighan et al., 1990)
» word alignment (Vogel et al., 1996)

» named-entity recognition (Bikel et al., 1999)
» compression (Conroy and O’Leary, 2001)

53

The Simplest Sequence Labeler

Define features of a labeled word in context: ¢(x,1i,y).

Train a classifier, e.g.,

U; = argmax s(x, 1,y)
yeL
li .
"= argmax w - ¢(x, 7, 7)
yeL

5/53

The Simplest Sequence Labeler

Define features of a labeled word in context: ¢(x,i,y).

Train a classifier, e.g.,

U; = argmax s(x, 1,y)
yeLl
li .
"= argmax w - ¢(x, 7, 7)
yeL

Sometimes this works!

6

53

The Simplest Sequence Labeler

Define features of a labeled word in context: ¢(x,1i,y).

Train a classifier, e.g.,

U; = argmax s(x, 1,y)
yeL
li .
"= argmax w - ¢(x, i, y)
yeL

Sometimes this works!

We can do better when there are predictable relationships between
Y; and Y.

53

Generative Sequence Labeling: Hidden Markov Models

/41

p(x,y) = Tyo H 91’2"3/7; *Vyilyi—a
=1

For each state/label y € L:
> 0., is the "emission” distribution

> Vily is called the “transition” distribution

We saw this model before (Brown clustering on 1/25). Differences:

» We used “z" before, now it's “y"
» Before, we wanted to discover each y; (“unsupervised”)

» Now, we want to map x — y, defined within a task (might be
supervised or not)

Graphical Reprsentation of Hidden Markov Models

Note: handling of beginning and end of sequence is a bit different
than before. From here on, ignore last x since quo =1.

Factor Graph Representation of Hidden Markov Models

GFoHTe

A More General Form

Twice now, we've made the move from generative models based
on repeated “rolls of dice” to discriminative models based on
feature representations.

» Language modeling
» Text classification

In the structured case, we can do the same thing.

+1
argmax p(yo) HP(%& Yi | yi-1)
yeLitl i=1
{+1
= argmax log p(yo) + Z log p(@i, yi | yi-1)
ye Lttt i=1
{+1
= argmaxzw - d(xi, Yin Yie1)
yeLtt i

In this case, each Y; “interacts” with Y;_; and Y4 directly.
11 /53

Structured vs. Not

(o (o o m()
& ®®® ©,
Each of these has an advantage over the other:

» The HMM lets the different labels “interact.”

» The simple unstructured classifier makes all of & available for
every decision.

12/53

A More Powerful Solution

Slightly more generally, define features of adjacent labels in
context: ¢(x,4,y,y').

Features can depend on any words at all; this turns out not to
affect asymptotic cost of prediction!

13 /53

Local Pairwise Classifier

(giv yi-ﬁ-l) = argmaxw - (,Z')(.’.U, i) Y, y/)
yy'el

14 /53

Local Pairwise Classifier

(giv yi—l—l) = argmaxw - ¢($, Z.7 Y, y/)
yy'eL

15/53

Local Pairwise Classifier

(g’iv gi-ﬁ-l) = argmaxw - (,Z')(.’L', i? Y, y/)
yy'el

16 /53

Local Pairwise Classifier

(gia Qi+1) = argmaxw - (b(m, i, Y, y,)
Yy €L

The problem is with disagreements: what if the Y. prediction and
the Ys.5 prediction do not agree about Y57

17 /53

Even More Powerful: “Global” Prediction

As with the pairwise model, define features of adjacent labeled
words in context: ¢(x,i,y,y’)

“Structured” classifer/predictor:

{+1

Y= argmaxZw (@0, Yi, Yio1)
yeLtt o

18 /53

Even More Powerful: “Global” Prediction

As with the pairwise model, define features of adjacent labeled
words in context: ¢(x,i,y,y')

“Structured” classifer/predictor:
041

Y = argmax Z w ¢(m7 i, Yi, yifl)
yeLttt o

O 00100
NV

19/53

Even More Powerful: “Global” Prediction

As with the pairwise model, define features of adjacent labeled
words in context: ¢(x,i,y,y’)
“Structured” classifer/predictor:

+1

g = argmax » W d(x, 4, yi,yi 1)
yeLttt T

K

This is a fundamentally different kind of problem, demanding new:

» predicting (“decoding”) algorithms
» training algorithms (to be discussed later)

20 /53

Prediction with HMMs

We'll start with the classical HMM, then return later to the
featurized case.

+1
argmax p(yo) Hp(%ﬁ Yi | Yi-1)
yeLitl i=1

How to optimize over |£| choices without explicit enumeration?

21/53

Prediction with HMMs

We'll start with the classical HMM, then return later to the
featurized case.

+1
argmax p(yo) Hp(%ﬁ vi | yi-1)
yeLt! i=1

How to optimize over |£|* choices without explicit enumeration?

Key: exploit the conditional independence assumptions:

YilY 12| Yia
YilY 00| Yig1

Part-of-Speech Tagging Example

| | suspect | the | present | forecast | is | pessimistic
noun | e ° ° ° ° °
adj. ° ° ° °
adv. °
verb ° ° ° °
num. | e
det. °
punc. °

With this very simple tag set, 7° = 5.7 million labelings.
(Even restricting to the possibilities above, 288 labelings.)

23 /53

Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each g; according to:

i = argmax p(y | gi—1) - p(xi | y)
yeL

What's wrong with these?

24 /53

Conditional Independence

We can get an exact solution in polynomial time!

YilY 12| Yina
YilYiyou | Yita

Given the adjacent labels to Y;, others do not matter.

Let's start at the last position, £ ...

25 /53

The End of the Sequence

I

T2

o | ComCon(nm(na(nn(s)

Y

last

p(Ye=vy| fﬂayk(z—l)) =pYe=y | Xe=20Yr 1=y 1, Y1 =)

=70y Oty Vylye—s

The decision about Y} is a function of y,_1, @, and nothing else!

26

53

High-Level View of Viterbi

» The decision about Yy is a function of y,_1, @, and nothing
elsel

27 /53

High-Level View of Viterbi

» The decision about Yy is a function of y,_1, @, and nothing
elsel

> If, for each value of y,_1, we knew the best y;.,_;), then
picking y¢ (and yy—1) would be easy.

28 /53

High-Level View of Viterbi

» The decision about Yy is a function of y,_1, @, and nothing
elsel

> If, for each value of y,_1, we knew the best y;.,_;), then
picking y¢ (and yy—1) would be easy.

» ldea: for each position i, calculate the score of the best label
prefix y,.; ending in each possible value for Y;.

29 /53

High-Level View of Viterbi

» The decision about Yy is a function of y,_1, @, and nothing
elsel

> If, for each value of y,_1, we knew the best y;.,_;), then
picking y¢ (and yy—1) would be easy.

» ldea: for each position i, calculate the score of the best label
prefix y,.; ending in each possible value for Y;.

» With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

30/53

Recurrence

First, think about the score of the best sequence.

Let s;(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

se(y) =y Oaaly - A Ty se-1(Y)

31/53

Recurrence

First, think about the score of the best sequence.

Let s;(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

SZ(y) = ’YO|y : 9$4|y ' I;/lgz(Yyly' Sé—l(y/)

s0-1(y) = g,y - maX Yyly se—2(y")

32/53

Recurrence

First, think about the score of the best sequence.

Let s;(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

se(y) =70 Oaely - A Ty se—1(y)
Sf—l(y)zemdy Iynaxr)/y\y SZ—Q(y/)

s0-2(Y) = Oa,ly - 02X Yyl - 56-3(Y)

33/53

Recurrence

First, think about the score of the best sequence.

Let s;(y) be the score of the best label sequence for x1.; that ends
in y. It is defined recursively:

5eU) =0 Oaely - 12Xyl | 5-1(Y)

SE—I(y) = Hmdy : Iyr}g%(r)/y\y’ : SZ—Q(y/)

s0-2(Y) = Oa,ly - AX Yy - 5-3(Y)

8i(y) = Og,ly - mAX Yy si—1(y)

34 /53

Recurrence

First, think about the score of the best sequence.

Let s;(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

$2(8) =01y Oacdy 005 Yy [s01 ()]
se-1(0) = oy 1y [320
se2(9) = Bagy Xy - 3030

5i(y) = Og,ly - IAX Yy’ si—1(y')

s1(y) = b,y - e ol Ty

35/53

Viterbi Procedure (Part I: Prefix Scores)

Z1

Z2

Ly

~

last

36

53

Viterbi Procedure (Part I: Prefix Scores)

I xI9 e Ty
y 51(y)
Yy s1(y)
ylast s1 (ylast)

Sl(y) = 9961\7; : Iyr,lgz{ Yyly' = Ty

37/53

Viterbi Procedure (Part I: Prefix Scores)

I xI9 e Ty
y 51(y) s2(y)
Yy s1(y') | s2(y)
ylast Sl(ylast) 82(ylast)

si(y) = Haci|y : g}gz Yyly' si—1(y")

38 /53

Viterbi Procedure (Part I: Prefix Scores)

I T2 Ty
y 51(y) s2(y) se(y)
Y s1(y') | s2(y) se(y')
ylast Sl(ylast) Sz(ylaSt) Sg(yl%t)

$e(W) =0 Vaely * X Yyl m

39/53

m: = ax pla,
Claim: riléxg(s@(y) ylé’lﬁwp(Y)

40 /53

Claim: rleleagc se(y) = yrgﬁ}flp(way)

/
= max 0,1y - MAX Yyl - | Se—1(Y)
I;leagc se(y) e TOly " Yaely et yly

41 /53

Claim: =
aim rleleag(s@(y) ylglgﬁ(lp(w,y)

max s = max -0 - max / n
el f(y) el fYO‘y |y Jer Yyly £ l(y)

= max <Oy 1y - MAX Yy | 0 - Max Yy 1y - | Se—o (Y
a7 YOy~ Yzely yer Vyly' | Vze_1ly y,,elﬂy |y (y"

42 /53

Claim: =
aim rleleag(s@(y) ylglgﬁ(lp(w,y)

max s = max -0 - max /-
e e(y) ey YOy~ Yzely s Yyly —1(y')

A
= max-y <O,y - MAX Yyl - | 0 /- MAX Yol | Se—2 (Y
A YOty Oaely AKX Vyly * | oyl X Yy ly "

= max -0 - max ,-
X Oy~ Yaely yer Tyly

"
- max - - max | 8o
Oy 1y yrar 1" Oy e 3(y")

43 /53

Claim: =
aim rleleag(s@(y) ylglgﬁ(lp(w,y)

max s = max -0 - max . n
et E(y) el ’YO‘Z/ |y ver Yyly' ¢ l(y)

f— //\
= maxy), Oyly - MAX Yy yr | O, pyr - MAX Yy - | Se—2(Y"

yeLl y'el y'eL
= max-y <041y - OAX Yyl
el Oy "~ YVaely ver yly
0 s MAX Yo [y " 0 s INAX Yottt | SP—3 y”/
To—1ly yet Y ly Te_oly yrer Y ly (y")
= max 7 Oilye Vyelyeos e alye s~ Vyeoilye—s”
yeLit ye - —11Ye— —11Ye—
exefz\yefz T exllyl “Tyrlyo * Tyo

44 /53

Claim: =
aim rleleag(s@(y) ylglgﬁ(lp(w,y)

maxs = max-y 9 - max-y, /'m
yeL Z(y) yeL Oly "~ Vely y'el vly ¢ (y)
1"

= max -y <0y, 1y - AKX Yy [y - | 0 /- AX Yoy | Se—2(y
el Oy " Yzely VL yly xo1ly viel y'ly (y"

= max -y <041y - TOAX Yyl
el Oy " Yzely VL yly

"
- max . - 1Max . _
Oosly - DX Vylyr | O _alyr * THAX Yyriy - | 50-3(4")

= yrenﬁaﬁl YOl Oelye " Vyelyeor " Oweilye—s * Vyeorlye—e’

0

To_olye—2 """ G-Tllyl “Yyilyo " Tyo
+1

= max T ||9'y
Yo zilyi " Vyslyioa
£+1
yeLl i—1

45 /53

High-Level View of Viterbi

» The decision about Yy is a function of y,_1, @, and nothing
elsel

> If, for each value of y,_1, we knew the best y;.,_;), then
picking y¢ (and yy—1) would be easy.

» ldea: for each position i, calculate the score of the best label
prefix y,.; ending in each possible value for Y;.

» With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

46 /53

Viterbi Procedure (Part |: Prefix Scores and Backpointers)

29!

x2

Ly

last

47 /53

Viterbi Procedure (Part |: Prefix Scores and Backpointers)

T i) e | Xy

ylast Sl(y

s1(y) = b,y - wer Tuly Ty

b1(y) = argmax yy|, - 7y
y'eL

48 /53

Viterbi Procedure (Part |: Prefix Scores and Backpointers)

I T2 e Ty
Y s1(y) s2(y)
b1(y) ba(y)
y s1(y") s2(y")
b1(y') ba(y')

ylast Sl(ylast) So (y

bi(y) = argmax vy, - si—1(y')
y'el

49 /53

Viterbi Procedure (Part |: Prefix Scores and Backpointers)

1 L2 Ly
y si(y) | s2(y) se(y)
bi(y) | ba(y) be(y)
Y si(y) | s2(y) se(y')
bi(y') | b)) be(y')
ylast Sl(ylast) SQ(ylast) s@(yl“s’ﬁ)
bl (last) b2 (ylast) bg (ylast)

Se(y):’YQw zely H}gX’Yy\y se-1(y')

be(y) = argmax vy, - se—1(y')
y'el

Full Viterbi Procedure

Input: @, 0, v,

Output: g

1. Forie (1,...,0):
» Solve for s;(*) and b;(x).
» Special base case for i = 1 to handle
> General recurrence for i € (2,...,0—1)
> Special case for i = £ to handle stopping probability

2. gy < argmax sp(y)
yeLl

3. Forie ((,...,1):
> Gio1 < b(yi)

51/53

Readings and Reminders

» Collins (2011), which has somewhat different notation;
Jurafsky and Martin (2015)

» Submit a suggestion for an exam question by Friday at 5pm.

52 /53

References |

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that
learns what's in a name. Machine learning, 34(1-3):211-231, 1999.

Kenneth W. Church. A stochastic parts program and noun phrase parser for
unrestricted text. In Proc. of ANLP, 1988.

Michael Collins. Tagging with hidden Markov models, 2011. URL
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf.

John M. Conroy and Dianne P. O’Leary. Text summarization via hidden Markov
models. In Proc. of SIGIR, 2001.

Daniel Jurafsky and James H. Martin. Part-of-speech tagging (draft chapter), 2015.
URL https://web.stanford.edu/~jurafsky/slp3/9.pdf.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction
program based on a noisy channel model. In Proc. of COLING, 1990.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment
in statistical translation. In Proc. of COLING, 1996.

53 /53

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf
https://web.stanford.edu/~jurafsky/slp3/9.pdf

