Natural Language Processing (CSE 517): Sequence Models (I)

Noah Smith

© 2016

University of Washington nasmith@cs.washington.edu

February 1, 2016

Where We Are

- ► Language models
- ► Text classification
- ► Linguistic analysis
- ▶ Generation

Linguistic Analysis: Overview

Every linguistic analyzer is comprised of:

- 1. Theoretical motivation from linguistics and/or the text domain
- 2. An algorithm that maps \mathcal{V}^{\dagger} to some output space \mathcal{Y} .
 - In this class, I'll start with abstract algorithms applicable to many problems.
- 3. An implementation of the algorithm
 - ▶ Once upon a time: rule systems and crafted rules
 - ▶ Most common now: supervised learning from annotated data
 - ► Frontier: less supervision (semi-, un-, distant, ...)

Sequence Labeling

After text classification $(\mathcal{V}^\dagger \to \mathcal{L})$, the next simplest type of output is a **sequence labeling**.

$$\langle x_1, x_2, \dots, x_\ell \rangle \mapsto \langle y_1, y_2, \dots, y_\ell \rangle$$

Every word (or character) gets a label in \mathcal{L} . Example problems:

- part-of-speech tagging (Church, 1988)
- ▶ spelling correction (Kernighan et al., 1990)
- word alignment (Vogel et al., 1996)
- named-entity recognition (Bikel et al., 1999)
- compression (Conroy and O'Leary, 2001)

The Simplest Sequence Labeler

Define features of a labeled word in context: $\phi(x, i, y)$.

Train a classifier, e.g.,

$$\begin{split} \hat{y}_i &= \operatorname*{argmax}_{y \in \mathcal{L}} s(\boldsymbol{x}, i, y) \\ &\stackrel{\mathsf{linear}}{=} \operatorname*{argmax}_{y \in \mathcal{L}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y) \end{split}$$

The Simplest Sequence Labeler

Define features of a labeled word in context: $\phi(x, i, y)$.

Train a classifier, e.g.,

$$\begin{split} \hat{y}_i &= \operatorname*{argmax}_{y \in \mathcal{L}} s(\boldsymbol{x}, i, y) \\ &\stackrel{\mathsf{linear}}{=} \operatorname*{argmax}_{y \in \mathcal{L}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y) \end{split}$$

Sometimes this works!

The Simplest Sequence Labeler

Define features of a labeled word in context: $\phi(x, i, y)$.

Train a classifier, e.g.,

$$\begin{split} \hat{y}_i &= \operatorname*{argmax}_{y \in \mathcal{L}} s(\boldsymbol{x}, i, y) \\ &\stackrel{\text{linear}}{=} \operatorname*{argmax}_{y \in \mathcal{L}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y) \end{split}$$

Sometimes this works!

We can do better when there are predictable relationships between Y_i and Y_{i+1} .

Generative Sequence Labeling: Hidden Markov Models

$$p(\boldsymbol{x}, \boldsymbol{y}) = \pi_{y_0} \prod_{i=1}^{\ell+1} \theta_{x_i|y_i} \cdot \gamma_{y_i|y_{i-1}}$$

For each state/label $y \in \mathcal{L}$:

- $lackbox{m{ heta}}_{*|y}$ is the "emission" distribution
- $lackbox{} \gamma_{*|y}$ is called the "transition" distribution

We saw this model before (Brown clustering on 1/25). Differences:

- ▶ We used "z" before, now it's "y"
- ▶ Before, we wanted to *discover* each y_i ("unsupervised")
- lacktriangle Now, we want to map $x\mapsto y$, defined within a task (might be supervised or not)

Graphical Reprsentation of Hidden Markov Models

Note: handling of beginning and end of sequence is a bit different than before. From here on, ignore last x since θ = 1.

Factor Graph Representation of Hidden Markov Models

A More General Form

Twice now, we've made the move from generative models based on repeated "rolls of dice" to discriminative models based on feature representations.

- Language modeling
- Text classification

In the structured case, we can do the same thing.

$$\begin{aligned} & \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} p(y_0) \prod_{i=1}^{\ell+1} p(x_i, y_i \mid y_{i-1}) \\ &= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \log p(y_0) + \sum_{i=1}^{\ell+1} \log p(x_i, y_i \mid y_{i-1}) \\ &= \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \sum_{i=1}^{\ell+1} \mathbf{w} \cdot \phi(x_i, y_i, y_{i-1}) \end{aligned}$$

In this case, each Y_i "interacts" with Y_{i-1} and Y_{i+1} directly.

Structured vs. Not

Each of these has an advantage over the other:

- ▶ The HMM lets the different labels "interact."
- ▶ The simple unstructured classifier makes all of *x* available for every decision.

A More Powerful Solution

Slightly more generally, define features of adjacent labels in context: $\phi(x, i, y, y')$.

Features can depend on *any words at all*; this turns out not to affect asymptotic cost of prediction!

$$(\hat{y}_i, \hat{y}_{i+1}) = \underset{y, y' \in \mathcal{L}}{\operatorname{argmax}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y, y')$$

$$(\hat{y}_i, \hat{y}_{i+1}) = \underset{y, y' \in \mathcal{L}}{\operatorname{argmax}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y, y')$$

$$y_1 \qquad y_2 \qquad y_3 \qquad y_4 \qquad y_5$$

$$y_0 \qquad y_1 \qquad y_2 \qquad y_3 \qquad y_4 \qquad y_4$$

$$(\hat{y}_i, \hat{y}_{i+1}) = \underset{y, y' \in \mathcal{L}}{\operatorname{argmax}} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y, y')$$

$$y_1 \qquad y_2 \qquad y_3 \qquad y_4 \qquad y_5$$

$$(\hat{y}_i, \hat{y}_{i+1}) = \underset{y, y' \in \mathcal{L}}{\operatorname{argmax}} \mathbf{w} \cdot \phi(\mathbf{x}, i, y, y')$$

$$y_1 \qquad y_2 \qquad y_3 \qquad y_4 \qquad y_5$$

$$y_0 \qquad y_1 \qquad y_2 \qquad y_3 \qquad y_4 \qquad y_5$$

The problem is with disagreements: what if the $Y_{1:2}$ prediction and the $Y_{2:3}$ prediction do not agree about Y_2 ?

Even More Powerful: "Global" Prediction

As with the pairwise model, define features of adjacent labeled words in context: $\phi(x,i,y,y')$

"Structured" classifer/predictor:

$$\hat{\boldsymbol{y}} = \operatorname*{argmax}_{\boldsymbol{y} \in \mathcal{L}^{\ell+1}} \sum_{i=1}^{t+1} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$

Even More Powerful: "Global" Prediction

As with the pairwise model, define features of adjacent labeled words in context: $\phi(x,i,y,y')$

"Structured" classifer/predictor:

Even More Powerful: "Global" Prediction

As with the pairwise model, define features of adjacent labeled words in context: $\phi(x,i,y,y')$

"Structured" classifer/predictor:

$$\hat{\boldsymbol{y}} = \underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} \sum_{i=1}^{\ell+1} \mathbf{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, y_i, y_{i-1})$$

This is a fundamentally different kind of problem, demanding new:

- predicting ("decoding") algorithms
- training algorithms (to be discussed later)

Prediction with HMMs

We'll start with the classical HMM, then return later to the featurized case.

$$\underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} p(y_0) \prod_{i=1}^{\ell+1} p(x_i, y_i \mid y_{i-1})$$

How to optimize over $|\mathcal{L}|^\ell$ choices without explicit enumeration?

Prediction with HMMs

We'll start with the classical HMM, then return later to the featurized case.

$$\underset{\boldsymbol{y} \in \mathcal{L}^{\ell+1}}{\operatorname{argmax}} p(y_0) \prod_{i=1}^{\ell+1} p(x_i, y_i \mid y_{i-1})$$

How to optimize over $|\mathcal{L}|^{\ell}$ choices without explicit enumeration?

Key: exploit the conditional independence assumptions:

$$Y_i \perp \mathbf{Y}_{1:i-2} \mid Y_{i-1}$$
$$Y_i \perp \mathbf{Y}_{i+2:\ell} \mid Y_{i+1}$$

Part-of-Speech Tagging Example

	ı	suspect	the	present	forecast	is	pessimistic	
noun	•	•	•	•	•	•		
adj.		•		•	•		•	
adv.				•				
verb		•		•	•	•		
num.	•							
det.			•					
punc.								•

With this very simple tag set, $7^8=5.7$ million labelings. (Even restricting to the possibilities above, 288 labelings.)

Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each \hat{y}_i according to:

$$\hat{y}_i = \operatorname*{argmax}_{y \in \mathcal{L}} p(y \mid \hat{y}_{i-1}) \cdot p(x_i \mid y)$$

What's wrong with these?

Conditional Independence

We can get an exact solution in polynomial time!

$$Y_i \perp \mathbf{Y}_{1:i-2} \mid Y_{i-1}$$
$$Y_i \perp \mathbf{Y}_{i+2:\ell} \mid Y_{i+1}$$

Given the adjacent labels to Y_i , others do not matter.

Let's start at the last position, ℓ . . .

The End of the Sequence

	x_1	x_2	 x_{ℓ}
y			
y'			
:			
y^{last}			

$$p(Y_{\ell} = y \mid \boldsymbol{x}, \boldsymbol{y}_{1:(\ell-1)}) = p(Y_{\ell} = y \mid X_{\ell} = x_{\ell}, Y_{\ell-1} = y_{\ell-1}, Y_{\ell+1} = \text{'})$$
$$= \gamma_{|y} \cdot \theta_{x_{\ell}|y} \cdot \gamma_{y|y_{\ell-1}}$$

The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!

▶ The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!

- ▶ The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- ▶ If, for each value of $y_{\ell-1}$, we knew the best $y_{1:(\ell-1)}$, then picking y_{ℓ} (and $y_{\ell-1}$) would be easy.

- ▶ The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- ▶ If, for each value of $y_{\ell-1}$, we knew the best $y_{1:(\ell-1)}$, then picking y_{ℓ} (and $y_{\ell-1}$) would be easy.
- ▶ Idea: for each position i, calculate the score of the best label prefix $y_{1:i}$ ending in each possible value for Y_i .

- ▶ The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- ▶ If, for each value of $y_{\ell-1}$, we knew the best $y_{1:(\ell-1)}$, then picking y_{ℓ} (and $y_{\ell-1}$) would be easy.
- ▶ Idea: for each position i, calculate the score of the best label prefix $y_{1:i}$ ending in each possible value for Y_i .
- With a little bookkeeping, we can then trace backwards and recover the best label sequence.

First, think about the *score* of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $m{x}_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcirc|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

First, think about the score of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1:i}$ that ends in y. It is defined recursively:

$$\begin{split} s_{\ell}(y) &= \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ s_{\ell-1}(y) &= \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')} \end{split}$$

First, think about the score of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for ${\pmb x}_{1:i}$ that ends in y. It is defined recursively:

$$\begin{split} s_{\ell}(y) &= \gamma_{\bigcirc|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \left\lfloor s_{\ell-1}(y') \right\rfloor \\ s_{\ell-1}(y) &= \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \left\lceil s_{\ell-2}(y') \right\rceil \\ s_{\ell-2}(y) &= \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \left\lceil s_{\ell-3}(y') \right\rceil \end{split}$$

First, think about the *score* of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1:i}$ that ends in y. It is defined recursively:

$$s_{\ell}(y) = \gamma_{\bigcup |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

$$s_{\ell-1}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')}$$

$$s_{\ell-2}(y) = \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-3}(y')}$$

$$\vdots$$

$$s_{i}(y) = \theta_{x_{i}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')}$$

First, think about the score of the best sequence.

Let $s_i(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1:i}$ that ends in y. It is defined recursively:

$$\begin{split} s_{\ell}(y) &= \gamma_{\bigcap|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ s_{\ell-1}(y) &= \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-2}(y')} \\ s_{\ell-2}(y) &= \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-3}(y')} \\ &\vdots \\ s_{i}(y) &= \theta_{x_{i}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')} \\ &\vdots \\ s_{1}(y) &= \theta_{x_{1}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'} \end{split}$$

Viterbi Procedure (Part I: Prefix Scores)

	x_1	x_2	 x_{ℓ}
y			
y'			
÷			
y^{last}			

Viterbi Procedure (Part I: Prefix Scores)

	x_1	x_2	 x_{ℓ}
y	$s_1(y)$		
y'	$s_1(y')$		
÷			
y^{last}	$s_1(y^{last})$		

$$s_1(y) = \theta_{x_1|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'}$$

Viterbi Procedure (Part I: Prefix Scores)

	x_1	x_2	 $ x_{\ell} $
y	$s_1(y)$	$s_2(y)$	
y'	$s_1(y')$	$s_2(y')$	
i			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	

$$s_i(y) = \theta_{x_i|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')}$$

Viterbi Procedure (Part I: Prefix Scores)

	x_1	x_2	 x_{ℓ}
y	$s_1(y)$	$s_2(y)$	$s_{\ell}(y)$
y'	$s_1(y')$	$s_2(y')$	$s_{\ell}(y')$
:			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	$s_{\ell}(y^{last})$

$$s_{\ell}(y) = \gamma_{\bigcirc|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

$$\text{Claim: } \max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{\boldsymbol{y} \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$$

$$\text{Claim: } \max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{\boldsymbol{y} \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$$

$$\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}} \gamma_{\bigcirc|y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \left[s_{\ell-1}(y') \right]$$

$$\mathsf{Claim} \colon \max_{y \in \mathcal{L}} s_\ell(y) = \max_{\boldsymbol{v} \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$$

$$\max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')}$$

$$= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y'')}}$$

$$\mathsf{Claim} \colon \max_{y \in \mathcal{L}} s_\ell(y) = \max_{\boldsymbol{v} \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$$

$$\begin{aligned} \max_{y \in \mathcal{L}} s_{\ell}(y) &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y''')} \\ &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \end{aligned}$$

$$\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{\theta_{x_{\ell-2}|y''} \cdot \max_{y''' \in \mathcal{L}} \gamma_{y''|y'''} \cdot \boxed{s_{\ell-3}(y''')}}$$

$$\mathsf{Claim} \colon \max_{y \in \mathcal{L}} s_\ell(y) = \max_{\boldsymbol{y} \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$$

$$\begin{split} \max_{y \in \mathcal{L}} s_{\ell}(y) &= \max_{y \in \mathcal{L}} \gamma_{||y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ &= \max_{y \in \mathcal{L}} \gamma_{||y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y'')} \\ &= \max_{y \in \mathcal{L}} \gamma_{||y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y''|y'''} \cdot \boxed{s_{\ell-3}(y''')} } \\ &= \max_{y \in \mathcal{L}^{\ell+1}} \gamma_{||y_{\ell}|} \cdot \theta_{x_{\ell}|y_{\ell}} \cdot \gamma_{y_{\ell}|y_{\ell-1}} \cdot \theta_{x_{\ell-1}|y_{\ell-1}} \cdot \gamma_{y_{\ell-1}|y_{\ell-2}} \cdot \\ &= \theta_{x_{\ell-2}|y_{\ell-2}} \cdot \cdot \cdot \cdot \theta_{x_{1}|y_{1}} \cdot \gamma_{y_{1}|y_{0}} \cdot \pi_{y_{0}} \end{split}$$

$\text{Claim: } \max_{y \in \mathcal{L}} s_{\ell}(y) = \max_{\boldsymbol{v} \in \mathcal{L}^{\ell+1}} p(\boldsymbol{x}, \boldsymbol{y})$

$$\begin{aligned} \max_{y \in \mathcal{L}} s_{\ell}(y) &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y'|y''} \cdot \boxed{s_{\ell-2}(y'')} \\ &= \max_{y \in \mathcal{L}} \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{\theta_{x_{\ell-1}|y'} \cdot \max_{y'' \in \mathcal{L}} \gamma_{y''|y'''} \cdot \boxed{s_{\ell-3}(y''')}} \\ &= \max_{y \in \mathcal{L}^{\ell+1}} \gamma_{\bigcirc |y_{\ell}} \cdot \theta_{x_{\ell}|y_{\ell}} \cdot \gamma_{y_{\ell}|y_{\ell-1}} \cdot \theta_{x_{\ell-1}|y_{\ell-1}} \cdot \gamma_{y_{\ell-1}|y_{\ell-2}} \cdot \\ &= \max_{y \in \mathcal{L}^{\ell+1}} \gamma_{y_{0}} \prod_{i=1}^{\ell+1} \theta_{x_{i}|y_{i}} \cdot \gamma_{y_{i}|y_{i-1}} \end{aligned}$$

High-Level View of Viterbi

- ▶ The decision about Y_{ℓ} is a function of $y_{\ell-1}$, x, and nothing else!
- ▶ If, for each value of $y_{\ell-1}$, we knew the best $y_{1:(\ell-1)}$, then picking y_{ℓ} (and $y_{\ell-1}$) would be easy.
- ▶ Idea: for each position i, calculate the score of the best label prefix $y_{1:i}$ ending in each possible value for Y_i .
- With a little bookkeeping, we can then trace backwards and recover the best label sequence.

	x_1	x_2	 x_{ℓ}
y			
y'			
:			
y^{last}			

	x_1	x_2	 x_{ℓ}
y	$s_1(y)$		
	$b_1(y)$		
y'	$s_1(y')$		
	$b_1(y')$		
:			
y^{last}	$s_1(y^{last}) b_1(y^{last})$		
	$b_1(y^{last})$		

$$\begin{split} s_1(y) &= \theta_{x_1|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'} \\ b_1(y) &= \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \pi_{y'} \end{split}$$

	x_1	x_2	 x_{ℓ}
y	$s_1(y)$	$s_2(y)$	
	$b_1(y)$	$b_2(y)$	
y'	$s_1(y')$	$s_2(y')$	
	$b_1(y')$	$b_2(y')$	
:			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	
	$b_1(y^{last})$	$b_2(y^{last})$	

$$\begin{aligned} s_i(y) &= \theta_{x_i|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{i-1}(y')} \\ b_i(y) &= \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot s_{i-1}(y') \end{aligned}$$

	x_1	x_2	 x_{ℓ}
y	$s_1(y)$	$s_2(y)$	$s_{\ell}(y)$
	$b_1(y)$	$b_2(y)$	$b_{\ell}(y)$
y'	$s_1(y')$	$s_2(y')$	$s_{\ell}(y')$
	$b_1(y')$	$b_2(y')$	$b_{\ell}(y')$
:			
y^{last}	$s_1(y^{last})$	$s_2(y^{last})$	$s_{\ell}(y^{last})$
	$b_1(y^{last})$	$b_2(y^{last})$	$b_{\ell}(y^{last})$

$$\begin{split} s_{\ell}(y) &= \gamma_{\bigcirc |y} \cdot \theta_{x_{\ell}|y} \cdot \max_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot \boxed{s_{\ell-1}(y')} \\ b_{\ell}(y) &= \operatorname*{argmax}_{y' \in \mathcal{L}} \gamma_{y|y'} \cdot s_{\ell-1}(y') \end{split}$$

Full Viterbi Procedure

Input: x, θ , γ , π

Output: \hat{y}

- 1. For $i \in \langle 1, \dots, \ell \rangle$:
 - ▶ Solve for $s_i(*)$ and $b_i(*)$.
 - Special base case for i=1 to handle π
 - General recurrence for $i \in \langle 2, \dots, \ell 1 \rangle$
 - \blacktriangleright Special case for $i=\ell$ to handle stopping probability
- 2. $\hat{y}_{\ell} \leftarrow \operatorname*{argmax}_{y \in \mathcal{L}} s_{\ell}(y)$
- 3. For $i \in \langle \ell, \dots, 1 \rangle$:
 - $\qquad \qquad \hat{y}_{i-1} \leftarrow b(y_i)$

Readings and Reminders

- ► Collins (2011), which has somewhat different notation; Jurafsky and Martin (2015)
- ▶ Submit a suggestion for an exam question by Friday at 5pm.

References I

- Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what's in a name. *Machine learning*, 34(1–3):211–231, 1999.
- Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In *Proc. of ANLP*, 1988.
- Michael Collins. Tagging with hidden Markov models, 2011. URL http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf.
- John M. Conroy and Dianne P. O'Leary. Text summarization via hidden Markov models. In *Proc. of SIGIR*, 2001.
- Daniel Jurafsky and James H. Martin. Part-of-speech tagging (draft chapter), 2015. URL https://web.stanford.edu/~jurafsky/slp3/9.pdf.
- Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction program based on a noisy channel model. In *Proc. of COLING*, 1990.
- Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment in statistical translation. In *Proc. of COLING*, 1996.