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Full Viterbi Procedure

Input: x, θ, γ, π

Output: ŷ

1. For i ∈ 〈1, . . . , `〉:
I Solve for si(∗) and bi(∗).

I Special base case for i = 1 to handle π (base case)
I General recurrence for i ∈ 〈2, . . . , `− 1〉

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y
′)

bi(y) = argmax
y′∈L

γy|y′ · si−1(y
′)

I Special case for i = ` to handle stopping probability

2. ŷ` ← argmax
y∈L

s`(y)

3. For i ∈ 〈`, . . . , 1〉:
I ŷi−1 ← b(yi)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y

y′

...

ylast
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y)

b1(y)

y′ s1(y
′)

b1(y
′)

...

ylast s1(y
last)

b1(y
last)

s1(y) = θx1|y ·max
y′∈L

γy|y′ · πy′

b1(y) = argmax
y′∈L

γy|y′ · πy′
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y) s2(y)

b1(y) b2(y)

y′ s1(y
′) s2(y

′)
b1(y

′) b2(y
′)

...

ylast s1(y
last) s2(y

last)
b1(y

last) b2(y
last)

si(y) = θxi|y ·max
y′∈L

γy|y′ · si−1(y′)

bi(y) = argmax
y′∈L

γy|y′ · si−1(y′)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

b1(y) b2(y) b`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

b1(y
′) b2(y

′) b`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

b1(y
last) b2(y

last) b`(y
last)

s`(y) = γ8|y · θx`|y ·max
y′∈L

γy|y′ · s`−1(y′)

b`(y) = argmax
y′∈L

γy|y′ · s`−1(y′)
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Viterbi Asymptotics

Space: O(|L|`)

Runtime: O(|L|2`)

x1 x2 . . . x`
y

y′

...

ylast
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Generalizing Viterbi
I Instead of HMM parameters, we can use the featurized

variant.

si(y) = max
y′∈L

exp
(
w · φ(x, i, y, y′)

)
· si−1(y′)

More features may increase runtime, but asymptotic
dependence on ` and |L| is the same.

I For this case and for the HMM case, taking logarithms is a
good idea.

I Note that dependence on entirety of x doesn’t affect
asymptotics.

I Viterbi instantiates an general algorithm called max-product
variable elimination for inference along a chain of variables
with pairwise links.

I Viterbi solves a special case of the “best path” problem.
I Higher-order dependencies among Y are also possible.
I Dynamic programming algorithms.
I Weighted finite-state analysis.
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Generalizing Viterbi

I Instead of HMM parameters, we can use the featurized
variant.

I Viterbi instantiates an general algorithm called max-product
variable elimination for inference along a chain of variables
with pairwise links.

I Applicable to Bayesian networks and Markov networks.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

I Dynamic programming algorithms.

I Weighted finite-state analysis.

9 / 40



Generalizing Viterbi
I Instead of HMM parameters, we can use the featurized

variant.
I Viterbi instantiates an general algorithm called max-product

variable elimination for inference along a chain of variables
with pairwise links.

I Viterbi solves a special case of the “best path” problem.

Y1 = N

Y1 = V

Y2 = N

Y2 = V

Y2 = A

Y3 = N

Y3 = V

Y3 = A

Y4 = N

Y4 = V

Y4 = A

initial Y5 =    

Y1 = A

Y0 = N

Y0 = V

Y0 = A

I Higher-order dependencies among Y are also possible.
I Dynamic programming algorithms.
I Weighted finite-state analysis.
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Generalizing Viterbi

I Instead of HMM parameters, we can use the featurized
variant.

I Viterbi instantiates an general algorithm called max-product
variable elimination for inference along a chain of variables
with pairwise links.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

si(y, y
′) = max

y′′∈L
exp

(
w · φ(x, i, y, y′, y′′)

)
· si−1(y′, y′′)

I Dynamic programming algorithms.

I Weighted finite-state analysis.
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Generalizing Viterbi

I Instead of HMM parameters, we can use the featurized
variant.

I Viterbi instantiates an general algorithm called max-product
variable elimination for inference along a chain of variables
with pairwise links.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

I Dynamic programming algorithms.

I Weighted finite-state analysis.
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Generalizing Viterbi

I Instead of HMM parameters, we can use the featurized
variant.

I Viterbi instantiates an general algorithm called max-product
variable elimination for inference along a chain of variables
with pairwise links.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

I Dynamic programming algorithms.

I Weighted finite-state analysis.
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Applications of Sequence Models

I part-of-speech tagging (Church, 1988)

I supersense tagging (Ciaramita and Altun, 2006)

I named-entity recognition (Bikel et al., 1999)

I multiword expressions (Schneider and Smith, 2015)

I base noun phrase chunking (Sha and Pereira, 2003)

Along the way, we’ll briefly mention two ways to learn sequence
models.
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Parts of Speech
http://mentalfloss.com/article/65608/

master-particulars-grammar-pop-culture-primer
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Parts of Speech

I “Open classes”: Nouns, verbs, adjectives, adverbs, numbers
I “Closed classes”:

I Modal verbs
I Prepositions (on, to)
I Particles (off, up)
I Determiners (the, some)
I Pronouns (she, they)
I Conjunctions (and, or)
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Parts of Speech in English: Decisions
Granularity decisions regarding:

I verb tenses, participles

I plural/singular for verbs, nouns

I proper nouns

I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

I Existential there

I Infinitive marker to

I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:

I Punctuation

I Compounds (Mark’ll, someone’s, gonna)

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al.,
1993)
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Parts of Speech in English: Decisions
Granularity decisions regarding:
I verb tenses, participles
I plural/singular for verbs, nouns
I proper nouns
I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:
I Existential there
I Infinitive marker to
I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:
I Punctuation
I Compounds (Mark’ll, someone’s, gonna)
I Social media: hashtag, at-mention, discourse marker (RT),

URL, emoticon, abbreviations, interjections, acronyms

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al.,
1993)
TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al., 2011)
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Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name

you Facebook laugh out loud

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name
! G O V P D A N

interjection acronym pronoun verb prep. det. adj. noun

you Facebook laugh out loud

so he can add u on fb lololol
P O V V O P ∧ !

preposition proper noun
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Why POS?

I Text-to-speech: record, lead, protest

I Lemmatization: saw/V → see; saw/N → saw

I Quick-and-dirty multiword expressions: (Adjective | Noun)∗

Noun (Justeson and Katz, 1995)
I Preprocessing for harder disambiguation problems:

I The Georgia branch had taken on loan commitments . . .
I The average of interbank offered rates plummeted . . .
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A Simple POS Tagger

Define a map V → L.
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if
you’re clever about handling unknown words.
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if
you’re clever about handling unknown words.

All datasets have some errors; estimated upper bound for Penn
Treebank is 98%.
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Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) = πy0

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I π is the “start” distribution

I θ∗|y is the “emission” distribution

I γ∗|y is called the “transition” distribution
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Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) = πy0

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I π is the “start” distribution

I θ∗|y is the “emission” distribution

I γ∗|y is called the “transition” distribution

Maximum likelihood estimate: count and normalize!
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants,
2000)
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants,
2000)

State of the art: ∼97.5% (Toutanova et al., 2003); uses a
feature-based model with:

I capitalization features

I spelling features

I name lists (“gazetteers”)

I context words

I hand-crafted patterns
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Other Labels

Parts of speech are a minimal syntactic representation.

Sequence labeling can get you a lightweight semantic
representation, too.

31 / 40



Supersenses

A problem with a long history: word-sense disambiguation.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006)
used a lexicon called WordNet to define 41 semantic classes for
words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own
right! See
http://wordnetweb.princeton.edu/perl/webwn to get
an idea.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words
and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006)
used a lexicon called WordNet to define 41 semantic classes for
words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own
right! See
http://wordnetweb.princeton.edu/perl/webwn to get
an idea.

This represents a coarsening of the annotations in the Semcor
corpus (Miller et al., 1993).
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Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a

box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can
watch the performance. “the royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible.
“his lying got him into a tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned. “the umpire warned the batter to stay in the
batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with
the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry
stayed in his box to avoid the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the
ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.
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Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a

box of spare parts”  n.artifact

2. box/loge: private area in a theater or grandstand where a small group can
watch the performance. “the royal box was empty”  n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”
 n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible.
“his lying got him into a tight corner”  n.state

5. box: a rectangular drawing. “the flowchart contained many boxes”  n.shape

6. box/boxwood: evergreen shrubs or small trees  n.plant

7. box: any one of several designated areas on a ball field where the batter or
catcher or coaches are positioned. “the umpire warned the batter to stay in the
batter’s box”  n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with
the driver”  n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry
stayed in his box to avoid the cold”  n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the
ear”  n.act

11. box/package: put into a box. “box the gift, please”  v.contact

12. box: hit with the fist. “I’ll box your ears!”  v.contact

13. box: engage in a boxing match.  v.competition
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Readings and Reminders

I Jurafsky and Martin (2015)

I Submit a suggestion for an exam question by Friday at 5pm.

I Your project is due March 9.
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