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Notation

Let V = 〈V1, V2, . . . , V`〉 be a collection of random variables (not
necessarily a sequence).

Val(V ) will denote the values of a r.v. V .

V I denotes a subset of the r.v.s V with indices i ∈ I.

V ¬I = V \ V I

Recall:

I p(V ) =
∏`

i=1 p(Vi | V1, . . . , Vi−1) (always true, for any
ordering)

I p(V I ,V J | V K) = p(V I | V K) · p(V J | V K) if and only if
V I⊥V J | V K (conditional independence)

I p(V I = vI) =
∑

v¬I∈Val(V ¬I)
p(V I = vI ,V ¬I = v¬I)

(marginalization)
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Factor Graphs

Two kinds of vertices:

I Random variables (denoted by circles, “Vi”)

I Factors (denoted by squares, “fj”)

The graph is bipartite; every edge connects some variable to some
factor. Let Ij ⊆ {1, . . . , `} be the set of variables fj is connected
to.

Factor fj defines a map Val(V Ij )→ R≥0.

The graph and factors define a probability distribution:

p(V = v) ∝
∏
j

fj(vIj )
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Factor Graphs We’ve Seen Before

Hidden Markov model:

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

General first-order sequence model:

x

y0 y1 y2 y3 y5y4
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Two Kinds of Factors

Conditional probability tables. E.g., if Ij = {1, 2, 3}:

fj(v1, v2, v3) = p(V3 = v3 | V1 = v1, V2 = v2)

Lead to Bayesian networks (with some constraints).

Potential functions (arbitrary nonnegative values).
Lead to Markov random fields (a.k.a. Markov networks).
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Yucky Bayesian Network

Influenza Allergies

Sinus 
Inflamm.

Runny 
Nose Headache

Sinus inflammation is caused by flu, but also by allergies.
Runny nose and headache are both caused by sinus inflammation.
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Yucky Factor Graph

Influenza Allergies

Sinus 
Inflamm.

Runny 
Nose Headache

I fI
0

1

I fA
0

1

S I A fS,I,A
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R S fR,S

0 0

0 1

1 0

1 1

H S fH,S

0 0

0 1

1 0

1 1
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Yucky Factor Graph

Influenza Allergies

Sinus 
Inflamm.

Runny 
Nose Headache

Influenza Allergies

Sinus 
Inflamm.

Runny 
Nose Headache

I fI
0

1

I fA
0

1

S I A fS,I,A
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R S fR,S

0 0

0 1

1 0

1 1

H S fH,S

0 0

0 1

1 0

1 1

p(i, a, s, r, h) = fI(i) · fA(a) · fS,I,A(s, i, a) · fR,S(r, s) · fH,S(h, s)

= p(i) · p(a) · p(s | i, a) · p(r | s) · p(h | s)
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Naughty Markov Random Field

Adrian

Brook

Chris

Dana

Independencies: A⊥C | B,D; B⊥D | A,C; ¬A⊥C; ¬B⊥D
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Naughty Factor Graph

Adrian

Brook

Chris

Dana

A B fA,B

0 0

0 1

1 0

1 1

B C fB,C

0 0

0 1

1 0

1 1

C D fC,D

0 0

0 1

1 0

1 1

D A fD,A

0 0

0 1

1 0

1 1

p(a, b, c, d) =

fA,B(a, b) · fB,C(b, c) · fC,D(c, d) · fD,A(d, a)∑
a′ ∈

Val(A)

∑
b′ ∈

Val(B)

∑
c′ ∈

Val(C)

∑
d′ ∈

Val(D)

fA,B(a
′, b′) · fB,C(b

′, c′) · fC,D(c
′, d′) · fD,A(d

′, a′)
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Assignment Probabilities: Examples

Adrian

Brook

Chris

Dana

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

C D fC,D

0 0 1

0 1 100

1 0 100

1 1 1

D A fD,A

0 0 100

0 1 1

1 0 1

1 1 100
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Assignment Probabilities: Examples

Adrian

Brook

Chris

Dana

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

C D fC,D

0 0 1

0 1 100

1 0 100

1 1 1

D A fD,A

0 0 100

0 1 1

1 0 1

1 1 100

∑
a′ ∈

Val(A)

∑
b′ ∈

Val(B)

∑
c′ ∈

Val(C)

∑
d′ ∈

Val(D)

fA,B(a
′, b′) · fB,C(b

′, c′) · fC,D(c
′, d′) · fD,A(d

′, a′)

= 7, 201, 840
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Assignment Probabilities: Examples

Adrian

Brook

Chris

Dana

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

C D fC,D

0 0 1

0 1 100

1 0 100

1 1 1

D A fD,A

0 0 100

0 1 1

1 0 1

1 1 100

p(A = 0, B = 1, C = 1, D = 0) =
5, 000, 000

7, 201, 840
≈ 0.69
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Assignment Probabilities: Examples

Adrian

Brook

Chris

Dana

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

C D fC,D

0 0 1

0 1 100

1 0 100

1 1 1

D A fD,A

0 0 100

0 1 1

1 0 1

1 1 100

p(A = 1, B = 1, C = 0, D = 0) =
10

7, 201, 840
≈ 0.0000014
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Structure and Independence

Bayesian networks:

I A variable is conditionally independent of its non-descendants
given its parents.

Markov networks:

I Conditional independence derived from “Markov blanket” and
separation properties.

Local configurations can be used to check all conditional
independence questions; almost no need to look at the values in
the factors!
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Independence “Spectrum”

∏̀
i=1

fVi(Vi) fV (V )

everything is independent everything can be interdependent

minimal expressive power arbitrary expressive power

fewer parameters more parameters
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Operations on Factors: Multiplication

Given two factors fU and fV , we can create a new “product”
factor such that:

fU∪V (u ∪ v) = fU (u) · fV (v)

for all u ∈ Val(U) and all v ∈ Val(V ).

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

·
B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

=

A B C fA,B,C

0 0 0 3,000

0 0 1 30

0 1 0 5

0 1 1 500

1 0 0 100

1 0 1 1

1 1 0 10

1 1 1 1,000
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Given two factors fU and fV , we can create a new “product”
factor such that:

fU∪V (u ∪ v) = fU (u) · fV (v)

for all u ∈ Val(U) and all v ∈ Val(V ).

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

·
B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

=

A B C fA,B,C

0 0 0 3,000

0 0 1 30

0 1 0 5

0 1 1 500

1 0 0 100

1 0 1 1

1 1 0 10

1 1 1 1,000

This might remind you of a join operation on a database.

19 / 77



Operations on Factors: Multiplication

Given two factors fU and fV , we can create a new “product”
factor such that:

fU∪V (u ∪ v) = fU (u) · fV (v)

for all u ∈ Val(U) and all v ∈ Val(V ).

A B fA,B

0 0 30

0 1 5

1 0 1

1 1 10

·
B C fB,C

0 0 100

0 1 1

1 0 1

1 1 100

=

A B C fA,B,C

0 0 0 3,000

0 0 1 30

0 1 0 5

0 1 1 500

1 0 0 100

1 0 1 1

1 1 0 10

1 1 1 1,000

What happens if you multiply out all the factors in a factor graph?
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Operations on Factors: Maximization

Given a factor fU and a variable V 6∈ U , we can transform fU ,V

into fU by:

fU (u) = max
v∈Val(V )

fU ,V (u, v)

for all u ∈ Val(U).

A C fA,C

0 0 3,000 B = 0
0 1 500 B = 1
1 0 100 B = 0
1 1 1,000 B = 1

= max
B

A B C fA,B,C

0 0 0 3,000

0 0 1 30

0 1 0 5

0 1 1 500

1 0 0 100

1 0 1 1

1 1 0 10

1 1 1 1,000
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Operations on Factors: Marginalization

Given a factor fU and a variable V 6∈ U , we can transform fU ,V

into fU by:

fU (u) =
∑

v∈Val(V )

fU ,V (u, v)

for all u ∈ Val(U).

A C fA,C

0 0 3,000 + 5

0 1 30 + 500

1 0 100 + 10

1 1 1 + 1,000

=
∑
B

A B C fA,B,C

0 0 0 3,000

0 0 1 30

0 1 0 5

0 1 1 500

1 0 0 100

1 0 1 1

1 1 0 10

1 1 1 1,000
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Operations on Factors: Marginalization

Given a factor fU and a variable V 6∈ U , we can transform fU ,V

into fU by:

fU (u) =
∑

v∈Val(V )

fU ,V (u, v)

for all u ∈ Val(U).

A C fA,C

0 0 3,000 + 5

0 1 30 + 500

1 0 100 + 10

1 1 1 + 1,000

=
∑
B

A B C fA,B,C

0 0 0 3,000

0 0 1 30

0 1 0 5

0 1 1 500

1 0 0 100

1 0 1 1

1 1 0 10

1 1 1 1,000

If you multiply out all the factors in a factor graph, then sum out
each variable, one by one, until none are left, what do you get?
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Factors are like numbers.

I Products are commutative: f1 · f2 = f2 · f1

I Products are associative: (f1 · f2) · f3 = f1 · (f2 · f3)
I Sums are commutative:

∑
X

∑
Y

f =
∑
Y

∑
X

f

I Maximizations are commutative: max
X

max
Y

f = max
Y

max
X

f

I Multiplication distributes over marginalization and
maximization: ∑

X

(f1 · f2) = f1 ·
∑
X

f2

max
X

(f1 · f2) = f1 ·max
X

f2

(assuming X is not in the scope of f1).
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Inference

Most general definition: “reason about some variables, optionally
given values of some others.” Let O be the observed variables and
U be the unobserved ones; V = O ∪U .

Three inference problems, all given O = o . . .

I Marginal inference: what is the marginal distribution over
Q ⊂ U? (p(Q | o), marginalizing out the rest.)

I Most probable explanation (MPE): what is the most
probable assignment to U? (argmaxu p(u | o))

I Maximum a posteriori (MAP): what is the most probable
assignment to Q ⊂ U? (argmaxq p(q | o))
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Inference

Most general definition: “reason about some variables, optionally
given values of some others.” Let O be the observed variables and
U be the unobserved ones; V = O ∪U .

Three inference problems, all given O = o . . .
I Marginal inference: what is the marginal distribution over
Q ⊂ U? (p(Q | o), marginalizing out the rest.)

I Related: draw samples from that distribution.

I Most probable explanation (MPE): what is the most
probable assignment to U? (argmaxu p(u | o))

I Related: what is the most dangerous assignment to U?

I Maximum a posteriori (MAP): what is the most probable
assignment to Q ⊂ U? (argmaxq p(q | o))
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Inference

Most general definition: “reason about some variables, optionally
given values of some others.” Let O be the observed variables and
U be the unobserved ones; V = O ∪U .

Three inference problems, all given O = o . . .
I Marginal inference: what is the marginal distribution over
Q ⊂ U? (p(Q | o), marginalizing out the rest.)

I Related: draw samples from that distribution.

I Most probable explanation (MPE): what is the most
probable assignment to U? (argmaxu p(u | o))

I Related: what is the most dangerous assignment to U?

I Maximum a posteriori (MAP): what is the most probable
assignment to Q ⊂ U? (argmaxq p(q | o))

I Related: what values of Q have the lowest expected cost?
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Marginal Inference

Given a factor graph with variables V , find the marginal
distribution over some Vi ∈ V , p(Vi).

Simple chain example, focusing on i = 4:

V1 V2 V3 V4

V1 fV1

0

1

V1 V2 fV1,V2

0 0

0 1

1 0

1 1

V2 V3 fV2,V3

0 0

0 1

1 0

1 1

V3 V4 fV3,V4

0 0

0 1

1 0

1 1
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Observations

I If we had a single fV4 , we could easily renormalize it to get
p(V4).

I Correct: fV4 =
∑
V1

∑
V2

∑
V3

fV1 · fV1,V2 · fV2,V3 · fV3,V4

I But that multiplied-out factor would have
∏
i

|Val(Vi)| values!

I Reorganize calculations:∑
V1

∑
V2

∑
V3

fV1 · fV1,V2 · fV2,V3 · fV3,V4

=
∑
V3

fV3,V4 ·

∑
V2

fV2,V3 ·

∑
V1

fV1,V2 · fV1


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Marginal Inference

V1 V2 V3 V4

V1 fV1

0

1

V1 V2 fV1,V2

0 0

0 1

1 0

1 1

V2 V3 fV2,V3

0 0

0 1

1 0

1 1

V3 V4 fV3,V4
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0 1

1 0

1 1

∑
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Marginal Inference

V1 V2 V3 V4

V2 fV2

0

1

V2 V3 fV2,V3

0 0

0 1

1 0

1 1

V3 V4 fV3,V4

0 0

0 1

1 0

1 1

∑
V1

∑
V2

∑
V3
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∑
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
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Marginal Inference

V1 V2 V3 V4

V3 fV3

0

1

V3 V4 fV3,V4

0 0

0 1

1 0

1 1

∑
V1

∑
V2

∑
V3

fV1 · fV1,V2 · fV2,V3 · fV3,V4
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∑
V3
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Marginal Inference

V1 V2 V3 V4

V4 fV4

0

1

∑
V1

∑
V2

∑
V3

fV1 · fV1,V2 · fV2,V3 · fV3,V4

= fV4
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Variable Elimination

Given a factor graph with factors f , eliminate variable V .

1. Let f elim ⊂ f be the factors connected to V

2. Let f keep = f \ f elim be the rest

3. Let fnew =
∑
V

∏
f∈felim

f

4. Return f keep ∪ {fnew}

Uses the graph structure to avoid exponential blowup; this is an
example of dynamic programming.
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Marginal Inference by Variable Elimination (No Evidence)

Given a factor graph with variables V and factors f , find the
marginal distribution over some V keep ⊂ V .

1. Order the variables in V \ V keep .

2. For each V ∈ V \ V keep :
I Eliminate V ; i.e., remove factors connected to V and replace

with the derived fnew .

The resulting factor graph is proportional to p(V keep).
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Marginal Inference by Variable Elimination (No Evidence)

Given a factor graph with variables V and factors f , find the
marginal distribution over some V keep ⊂ V .

1. Order the variables in V \ V keep .
The ordering can make a huge difference!

2. For each V ∈ V \ V keep :
I Eliminate V ; i.e., remove factors connected to V and replace

with the derived fnew .

The resulting factor graph is proportional to p(V keep).
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A Less Good Ordering

V1 V2 V3 V4

∑
V1

∑
V2

∑
V3

fV1 · fV1,V2 · fV2,V3 · fV3,V4

=
∑
V1

fV1 ·

∑
V2

fV1,V2 ·

∑
V3

fV2,V3 · fV3,V4


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=

∑
V1

fV1 ·

∑
V2

fV1,V2 · fV2,V4


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What About Evidence?

Original problem: given O = o, what is the marginal distribution
over Q ⊂ U? (I.e., p(Q | O = o).)

V
O

Q
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This adds a step at the beginning: reduce factors to “respect the
evidence.”
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What About Evidence?

Original problem: given O = o, what is the marginal distribution
over Q ⊂ U? (I.e., p(Q | O = o).)

This adds a step at the beginning: reduce factors to “respect the
evidence.”

This will remind you of a select . . . where operation in a database.
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Marginal Inference

Suppose V1 is observed to take value 1.

V1 V2 V3 V4

V1 fV1

0

1

V1 V2 fV1,V2

0 0

0 1

1 0

1 1

V2 V3 fV2,V3

0 0

0 1

1 0

1 1

V3 V4 fV3,V4

0 0

0 1

1 0

1 1

53 / 77



Marginal Inference

Suppose V1 is observed to take value 1.

V1 V2 V3 V4

V1 fV1

0

1

V1 V2 fV1,V2

0 0

0 1

1 0

1 1

V2 V3 fV2,V3

0 0

0 1

1 0

1 1

V3 V4 fV3,V4

0 0

0 1

1 0

1 1

54 / 77



Marginal Inference

Suppose V1 is observed to take value 1.

V1 V2 V3 V4

V1 fV1

0

1

V1 V2 fV1,V2

0 0

0 1

1 0

1 1

V2 V3 fV2,V3

0 0

0 1

1 0

1 1

V3 V4 fV3,V4

0 0

0 1

1 0

1 1

Note that fV1 is now a constant; since we renormalize at the end,
we can ignore it. Observed nodes may create a “separation”
between variables of interest and some factors.
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Marginal Inference by Variable Elimination with Evidence

Given a factor graph with variables V and factors f , and given
O = o (where O ⊂ V ), find the marginal distribution over
Q ⊆ U = V \O.

1. Reduce factors connected to O to respect the evidence.

2. Order the variables in U \Q.

3. For each V ∈ U \Q:
I Eliminate V ; i.e., remove factors connected to V and replace

with the derived fnew .

The resulting factor graph is proportional to p(Q | O = o).

56 / 77



Remarks on Computational Complexity

In general, denser graphs are more expensive.

Runtime and space depend on the size of the original and
intermediate factors. (This is why ordering matters so much.)

Finding the best ordering is NP-hard.

Certain graphical structures allow inference in linear time with
respect to the size of the original factors.

I Bayesian networks: polytrees

I Markov networks: chordal graphs
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Return to Hidden Markov Models

I Hidden Markov models are not (quite) Bayesian networks.

I Given an observed sequence x, however, an HMM provides a
pattern to construct a Bayesian network.

I Sometimes called “dynamic graphical models.”

I Marginal inference for every Yi in an HMM can be
accomplished by variable elimination.

I All variables share some computation with those to their right
and those to their left.

I This is called the forward-backward algorithm.
I This is useful when we want to apply EM to HMMs

(unsupervised sequence modeling).
I It is also useful in supervised learning.
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Related Topics

I Conditional random fields

I MPE inference

I MAP inference

I Inexact inference
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Conditional Random Fields (Sequence Version)
Lafferty et al. (2001)

A nice confluence:

I Probabilistic graphical model-style reasoning, as in HMMs.

I Discriminative training, as with structured perceptron.

Local factors: fi(x, y, y
′) = exp (w · φ(x, i, y, y′))

Log loss, where the graphical model parameterizes the probability
distribution:

n∑
i=1

log
∑

y∈L`i+1

exp

w ·
`i+1∑
j=1

φ(xi, j, yj , yj−1)


︸ ︷︷ ︸

fear

−w ·
`i+1∑
j=1

φ(xi, j, yi j , yi j−1)︸ ︷︷ ︸
hope
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Conditional Random Fields (General Version)

Factor graph consisting of “input” variables X (always observed)
and “output” variables Y .

p(Y = y |X = x) =

∏
j fj(x,yIj )∑

y′∈Val(Y )

∏
j

fj(x,y
′
Ij )

MLE:

n∑
i=1

log
∑

y∈Val(Y )

∏
j

fj(xi,yIj )︸ ︷︷ ︸
fear

− log
∏
j

fj(xi,yi Ij )︸ ︷︷ ︸
hope

Marginal inference is required for calculating the left term and its
gradient with respect to w.
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MPE Inference

argmax
u∈Val(U)

p(U = u | O = o)
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Variable elimination and exact inference are identical to the
marginal case!
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Just replace each sum operation with a max operation, and add
bookkeeping to recover the most probable assignment.
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bookkeeping to recover the most probable assignment.

The Viterbi algorithm is, of course, an instance of this. Each
“si(∗)” is an intermediate factor.
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MPE Inference

argmax
u∈Val(U)

p(U = u | O = o)

Variable elimination and exact inference are identical to the
marginal case!

Just replace each sum operation with a max operation, and add
bookkeeping to recover the most probable assignment.

The Viterbi algorithm is, of course, an instance of this. Each
“si(∗)” is an intermediate factor.

Specifically for sequence models, it should be clear how
factors/features that depend on the observed sequence X don’t
affect the asymptotics of exact inference.
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Rocket Science: True MAP

Given a factor graph with variables V and factors f , and given
O = o (where O ⊂ V ), find the most probable assignment of
Q ⊂ U = V \O.

Let R = U \Q.

argmax
q∈Val(Q)

p(Q = q | O = o)

= argmax
q∈Val(Q)

∑
r∈Val(R)

p(Q = q,R = r | O = o)

Solution: first use marginal inference to eliminate R, then use max
inference to solve for Q.
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Alternative Inference Methods

Huge range of techniques!

Exact:

I Integer linear programming

Inexact:

I randomized (e.g., Gibbs sampling, importance sampling,
simulated annealing)

I deterministic (e.g., mean field variational, loopy belief
propagation, linear programming relaxations, dual
decomposition, beam search)
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Readings and Reminders

I Koller et al. (2007)

I Submit a suggestion for an exam question by Friday at 5pm.

I Your project is due March 9.
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