
Natural Language Processing (CSE 517):
Dependency Structure

Noah Smith
c© 2016

University of Washington
nasmith@cs.washington.edu

February 24, 2016

1 / 45

Why might you want to use a generative classifier, such as Naive
Bayes, as opposed to a discriminative classifier, and vice versa?

How can one deal with out-of-vocabulary words at test time when
one is applying an HMM for POS tagging or a PCFG for parsing?

What is marginal inference, and how can it be carried out on a
factor graph?

What are the advantages and disadvantages of using a context-free
grammar in Chomsky normal form?

2 / 45

Starting Point: Phrase Structure

S

NP

DT

The

NN

luxury

NN

auto

NN

maker

NP

JJ

last

NN

year

VP

VBD

sold

NP

CD

1,214

NN

cars

PP

IN

in

NP

DT

the

NNP

U.S.

3 / 45

Parent Annotation
(Johnson, 1998)

SROOT

NPS

DTNP

The

NNNP

luxury

NNNP

auto

NNNP

maker

NPS

JJNP

last

NNNP

year

VPS

VBDVP

sold

NPVP

CDNP

1,214

NNNP

cars

PPVP

INPP

in

NPPP

DTNP

the

NNPNP

U.S.

Increases the “vertical” Markov order:

p(children | parent, grandparent)

4 / 45

Headedness

S

NP

DT

The

NN

luxury

NN

auto

NN

maker

NP

JJ

last

NN

year

VP

VBD

sold

NP

CD

1,214

NN

cars

PP

IN

in

NP

DT

the

NNP

U.S.

Suggests “horizontal” markovization:

p(children | parent) = p(head | parent) ·
∏
i

p(ith sibling | head, parent)

5 / 45

Lexicalization

Ssold

NPmaker

DTThe

The

NNluxury

luxury

NNauto

auto

NNmaker

maker

NPyear

JJlast

last

NNyear

year

VPsold

VBDsold

sold

NPcars

CD1,214

1,214

NNcars

cars

PPin

INin

in

NPU.S.

DTthe

the

NNPU.S.

U.S.

Each node shares a lexical head with its head child.

6 / 45

Transformations on Trees

Starting around 1998, many different ideas—both linguistic and
statistical—about how to transform treebank trees.

All of these make the grammar larger—and therefore all
frequencies became sparser—so a lot of research on smoothing the
probability rules.

Parent annotation, headedness, markovization, and lexicalization;
also category refinement by linguistic rules (Klein and Manning,
2003).

I These are reflected in some versions of the popular Stanford
and Berkeley parsers.

7 / 45

Tree Decorations
(Klein and Manning, 2003)

I Mark nodes with only 1 child as UNARY

I Mark DTs (determiners), RBs (adverbs) when they are only
children

I Annotate POS tags with their parents

I Split IN (prepositions; 6 ways), AUX, CC, %

I NPs: temporal, possessive, base

I VPs annotated with head tag (finite vs. others)

I DOMINATES-V

I RIGHT-RECURSIVE NP

8 / 45

Machine Learning and Parsing

I Define arbitrary features on trees, based on linguistic
knowledge; to parse, use a PCFG to generate a k-best list of
parses, then train a log-linear model to rerank (Charniak and
Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)
I Define rule-local features on trees (and any part of the input

sentence); minimize hinge or log loss.
I These exploit dynamic programming algorithms for training

(CKY for arbitrary scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables
(Petrov et al., 2006).

I Neural, too:
I Socher et al. (2013) define compositional vector grammars

that associate each phrase with a vector, calculated as a
function of its subphrases’ vectors. Used essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars,
generative models like PCFGs that encode arbitrary previous
derivation steps in a vector. Parsing requires some tricks.

9 / 45

Machine Learning and Parsing
I Define arbitrary features on trees, based on linguistic

knowledge; to parse, use a PCFG to generate a k-best list of
parses, then train a log-linear model to rerank (Charniak and
Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)

I Define rule-local features on trees (and any part of the input
sentence); minimize hinge or log loss.

I These exploit dynamic programming algorithms for training
(CKY for arbitrary scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables
(Petrov et al., 2006).

I Neural, too:
I Socher et al. (2013) define compositional vector grammars

that associate each phrase with a vector, calculated as a
function of its subphrases’ vectors. Used essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars,
generative models like PCFGs that encode arbitrary previous
derivation steps in a vector. Parsing requires some tricks.

10 / 45

Machine Learning and Parsing
I Define arbitrary features on trees, based on linguistic

knowledge; to parse, use a PCFG to generate a k-best list of
parses, then train a log-linear model to rerank (Charniak and
Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)
I Define rule-local features on trees (and any part of the input

sentence); minimize hinge or log loss.
I These exploit dynamic programming algorithms for training

(CKY for arbitrary scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables
(Petrov et al., 2006).

I Neural, too:
I Socher et al. (2013) define compositional vector grammars

that associate each phrase with a vector, calculated as a
function of its subphrases’ vectors. Used essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars,
generative models like PCFGs that encode arbitrary previous
derivation steps in a vector. Parsing requires some tricks.

11 / 45

Structured Perceptron
Collins (2002)

Perceptron algorithm for parsing:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I t̂it ← argmax

t∈Txit

w ·Φ(xit , t)

I w← w − α
(
Φ(xit , t̂it)−Φ(xit , tit)

)
This can be viewed as stochastic subgradient descent on the
structured hinge loss:

n∑
i=1

max
t∈Txit

w ·Φ(xi, t)︸ ︷︷ ︸
fear

−w ·Φ(xi, ti)︸ ︷︷ ︸
hope

12 / 45

Beyond Structured Perceptron (I)

Structured support vector machine (also known as max margin
parsing; Taskar et al., 2004):

n∑
i=1

max
t∈Txit

w ·Φ(xi, t) + cost(tit , t)︸ ︷︷ ︸
fear

−w ·Φ(xi, ti)︸ ︷︷ ︸
hope

where cost(ti, t) is the number of local errors (either constituent
errors or “rule” errors).

13 / 45

Beyond Structured Perceptron (II)

Log-loss, which gives parsing models analogous to conditional
random fields (Miyao and Jun’ichi, 2002; Finkel et al., 2008):

n∑
i=1

log
∑
t∈Txi

expw ·Φ(xi, t)︸ ︷︷ ︸
fear

−w ·Φ(xi, ti)︸ ︷︷ ︸
hope

14 / 45

Machine Learning and Parsing
I Define arbitrary features on trees, based on linguistic

knowledge; to parse, use a PCFG to generate a k-best list of
parses, then train a log-linear model to rerank (Charniak and
Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)
I Define rule-local features on trees (and any part of the input

sentence); minimize hinge or log loss.
I These exploit dynamic programming algorithms for training

(CKY for arbitrary scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables
(Petrov et al., 2006).

I Neural, too:
I Socher et al. (2013) define compositional vector grammars

that associate each phrase with a vector, calculated as a
function of its subphrases’ vectors. Used essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars,
generative models like PCFGs that encode arbitrary previous
derivation steps in a vector. Parsing requires some tricks.

15 / 45

Machine Learning and Parsing
I Define arbitrary features on trees, based on linguistic

knowledge; to parse, use a PCFG to generate a k-best list of
parses, then train a log-linear model to rerank (Charniak and
Johnson, 2005).

I K-best parsing: Huang and Chiang (2005)
I Define rule-local features on trees (and any part of the input

sentence); minimize hinge or log loss.
I These exploit dynamic programming algorithms for training

(CKY for arbitrary scores, and the sum-product version).

I Learn refinements on the constituents, as latent variables
(Petrov et al., 2006).

I Neural, too:
I Socher et al. (2013) define compositional vector grammars

that associate each phrase with a vector, calculated as a
function of its subphrases’ vectors. Used essentially to rerank.

I Dyer et al. (2016): recurrent neural network grammars,
generative models like PCFGs that encode arbitrary previous
derivation steps in a vector. Parsing requires some tricks.

16 / 45

Dependencies

Informally, you can think of dependency structures as a
transformation of phrase-structures that

I maintains the word-to-word relationships induced by
lexicalization,

I adds labels to them, and

I eliminates the phrase categories.

There are also linguistic theories built on dependencies (Tesnière,
1959; Mel’čuk, 1987), as well as treebanks corresponding to those.

I Free(r)-word order languages (e.g., Czech)

17 / 45

Dependency Tree: Definition

Let x = 〈x1, . . . , xn〉 be a sentence. Add a special root symbol
as “x0.”

A dependency tree consists of a set of tuples 〈p, c, `〉, where

I p ∈ {0, . . . , n} is the index of a parent

I c ∈ {1, . . . , n} is the index of a child

I ` ∈ L is a label

Different annotation schemes define different label sets L, and
different constraints on the set of tuples. Most commonly:

I The tuple is represented as a directed edge from xp to xc with
label `.

I The directed edges form an arborescence (directed tree) with
x0 as the root.

18 / 45

Example

S

NP

Pronoun

we

VP

Verb

wash

NP

Determiner

our

Noun

cats

Phrase-structure tree.

19 / 45

Example

S

NP

Pronoun

we

VP

Verb

wash

NP

Determiner

our

Noun

cats

Phrase-structure tree with heads.

20 / 45

Example

Swash

NPwe

Pronounwe

we

VPwash

Verbwash

wash

NPcats

Determinerour

our

Nouncats

cats

Phrase-structure tree with heads, lexicalized.

21 / 45

Example

we wash our cats

“Bare bones” dependency tree.

22 / 45

Example

we wash our cats who stink

23 / 45

Example

we vigorously wash our cats who stink

24 / 45

Example

we vigorously wash our cats and dogs who stink

The bugbear of dependency syntax: coordination structures.

25 / 45

Example

we vigorously wash our cats and dogs who stink

Make the first conjunct the head?

26 / 45

Example

we vigorously wash our cats and dogs who stink

Make the coordinating conjunction the head?

27 / 45

Example

we vigorously wash our cats and dogs who stink

Make the second conjunct the head?

28 / 45

Dependency Schemes

I Transform the treebank: define “head rules” that can select
the head child of any node in a phrase-structure tree and label
the dependencies.

I More powerful, less local rule sets, possibly collapsing some
words into arc labels.

I Stanford dependencies are a popular example (de Marneffe
et al., 2006).

I Direct annotation.

29 / 45

Dependencies and Grammar

Context-free grammars can be used to encode dependency
structures.

For every head word and constellation of dependent children:

Nhead → Nleftmost-sibling . . . Nhead . . . Nrightmost-sibling

And for every head word: Nhead → head

A bilexical dependency grammar binarizes the dependents,
generating only one per rule, usually “outward” from the head.

Such a grammar can produce only projective trees, which are
(informally) trees in which the arcs don’t cross.

30 / 45

Quick Reminder: CKY

i k

N

j + 1 k

R

i j

L

p(L R | N) i i

N

p(xi | N)

1 n

Sgoal:

Each “triangle” item corresponds to a buildable phrase.

31 / 45

CKY Example

we wash our cats

goal

Pronoun Verb Poss. Noun

NP

VP

S

32 / 45

CKY for Bilexical Context-Free Grammars

i k

Nxh

j + 1 k

Nxc

i j

Nxh

p(Nxh Nxc | Nxh)

i k

Nxh

j + 1 k

Nxh

i j

Nxc

p(Nxc Nxh | Nxh)

Here we ignore the initial and goal rules.

33 / 45

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Items:
h d d h c h h c

I Both triangles indicate that xd is a descendant of xh.

I Both trapezoids indicate that xc can be attached as the child
of xh.

I In all cases, the words “in between” are descendants of xh.

34 / 45

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Initialization:

i i i i

p(xi | Nxi)
1/2p(xi | Nxi)

1/2

Goal:

1 i i n
p(Nxi | S)

goal

35 / 45

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Attaching a left dependent:

i j j + 1 k

i k

p(Nxi Nxk | Nxk)

Complete a left child:

j ki j

i k
36 / 45

Dependency Parsing with the Eisner Algorithm
(Eisner, 1996)

Attaching a right dependent:

i j j + 1 k

i k

p(Nxi Nxk | Nxi)

Complete a right child:

i j j k

i k
37 / 45

Eisner Algorithm Example

we wash our cats

goal

38 / 45

Slight Generalization

The Eisner algorithm can be used to find the projective tree with
the highest score whenever the score of the dependency tree has
this form: ∏

〈p,c,`〉∈t

s(p, c, `;x) = exp
∑
〈p,c,`〉∈t

log s(p, c, `;x)

(Recall that a tree t consists of a set of parent/child/label tuples
of the form 〈p, c, `〉; see slide 18.)

This property of a scoring function is called arc factorization;
McDonald et al. (2005) called it “edge-based factorization.”

39 / 45

Remarks on Dependency Parsing

I Naively using CKY with the bilexical grammar will have O(n5)
runtime; Eisner gives us O(n3).

I Ask with CKY for phrase-structure, a narrow-to-wide ordering
is reasonable, but an agenda may make parsing faster.

I As with phrase-structure parsing, you can get better accuracy
with higher Markov order:

I horizontal (among siblings)
I vertical (grandparents)

I Transition-based approaches are popular among those who
want speed.

I What about the projectivity assumption?
I See the reading (McDonald et al., 2005)!

40 / 45

Nonprojective Example

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT

41 / 45

Final Notes on Parsing

I Formalisms that are more powerful than context-free
grammars include tree adjoining grammars, combinatory
categorial grammars, and unification-based grammars.

I Very attractive from a linguistic point of view
I Large-scale annotation has been a challenge.

I What are parse trees good for?
I Syntax is a scaffold for semantics (as we’ll see next week), as

well as information extraction, question answering, and
sometimes machine translation.

I Features in text categorization (e.g., sentiment)

42 / 45

Readings and Reminders

I McDonald et al. (2005)

I Assignment 4 is due March 2.

I Submit a suggestion for an exam question by Friday at 5pm.

I Your project is due March 9.

43 / 45

References I

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and maxent
discriminative reranking. In Proc. of ACL, 2005.

Michael Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proc. of EMNLP, 2002.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.
Generating typed dependency parses from phrase structure parses. In Proc. of
LREC, 2006.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent
neural network grammars, 2016. To appear.

Jason M. Eisner. Three new probabilistic models for dependency parsing: An
exploration. In Proc. of COLING, 1996.

Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. Efficient,
feature-based, conditional random field parsing. In Proc. of ACL, 2008.

Liang Huang and David Chiang. Better k-best parsing. In Proc. of IWPT, 2005.

Mark Johnson. PCFG models of linguistic tree representations. Computational
Linguistics, 24(4):613–32, 1998.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proc. of
ACL, 2003.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of
HLT-EMNLP, 2005. URL http://www.aclweb.org/anthology/H/H05/H05-1066.

44 / 45

http://www.aclweb.org/anthology/H/H05/H05-1066

References II

Igor A. Mel’čuk. Dependency Syntax: Theory and Practice. State University Press of
New York, 1987.

Yusuke Miyao and Tsujii Jun’ichi. Maximum entropy estimation for feature forests. In
Proc. of HLT, 2002.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proc. of COLING-ACL, 2006.

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing
with compositional vector grammars. In Proc. of ACL, 2013.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In
Advances in Neural Information Processing Systems 16. 2004.

L. Tesnière. Éléments de Syntaxe Structurale. Klincksieck, 1959.

45 / 45

