CSE 517 Natural Language Processing Winter 2015

Parsing (Trees)

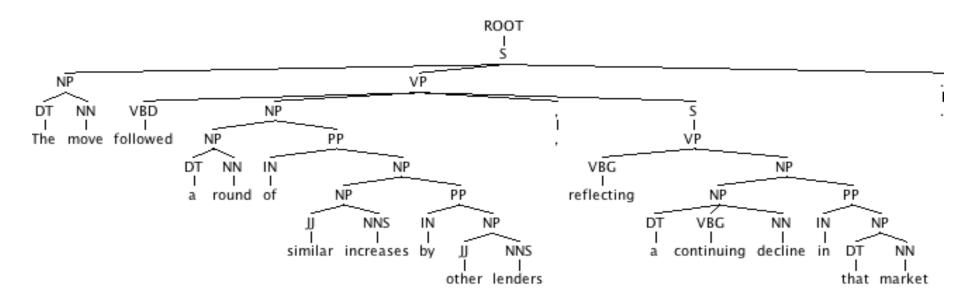
Yejin Choi - University of Washington

[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]

Topics

- Parse Trees
- Probabilistic) Context Free Grammars
 - Supervised learning
 - Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)

Parse Trees



The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Penn Treebank Non-terminals

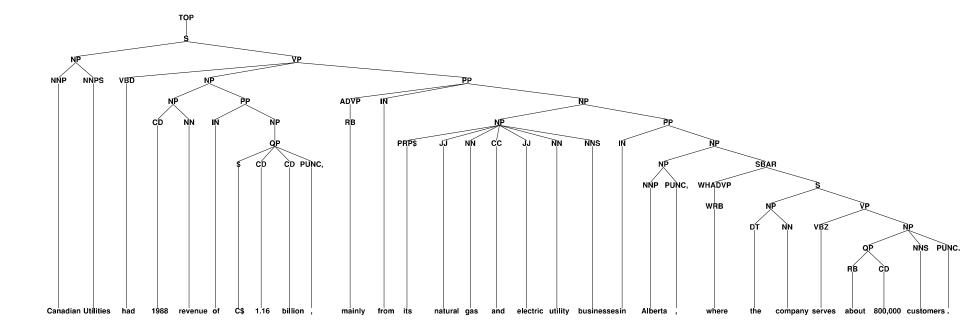
Table 1.2. The Penn Treebank syntactic tagset

ADJP	Adjective phrase
ADVP	Adverb phrase
NP	Noun phrase
PP	Prepositional phrase
S	Simple declarative clause
SBAR	Subordinate clause
SBARQ	Direct question introduced by <i>wh</i> -element
SINV	Declarative sentence with subject-aux inversion
SQ	Yes/no questions and subconstituent of SBARQ excluding wh-element
VP	Verb phrase
WHADVP	Wh-adverb phrase
WHNP	Wh-noun phrase
WHPP	Wh-prepositional phrase
Х	Constituent of unknown or uncertain category
*	"Understood" subject of infinitive or imperative
0	Zero variant of <i>that</i> in subordinate clauses
Т	Trace of wh-Constituent

The Penn Treebank: Size

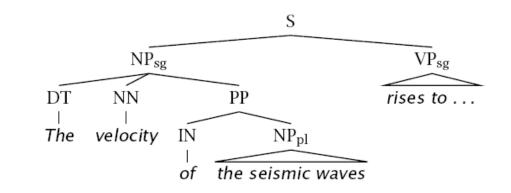
- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:



Phrase Structure Parsing

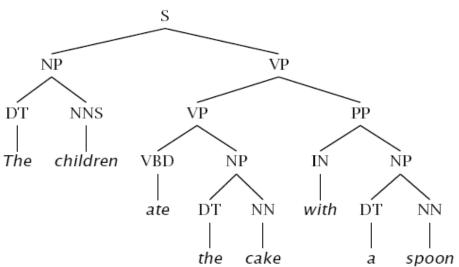
- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...



new art critics write reviews with computers

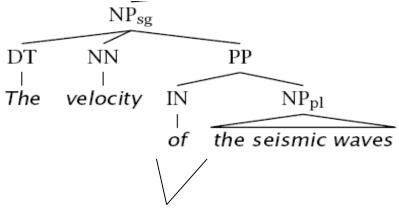
Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - he, she, it, they, ...
 - Question / answer
 - Deletion
 - Movement / dislocation
 - Conjunction / coordination
- Cross-linguistic arguments, too



Conflicting Tests

- Constituency isn't always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I'll go
 - I want to $go \rightarrow I$ wanna go
 - a le centre \rightarrow au centre



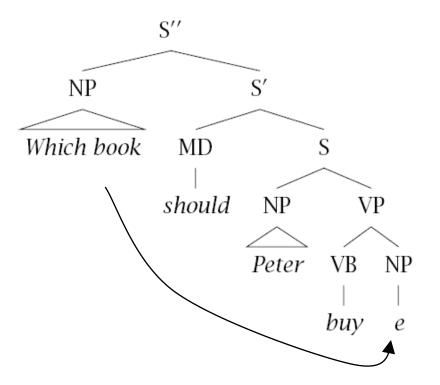
La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

Non-Local Phenomena

Dislocation / gapping

- Which book should Peter buy?
- A debate arose which continued until the election.
- Binding
 - Reference
 - The IRS audits itself
 - Control
 - I want to go
 - I want you to go



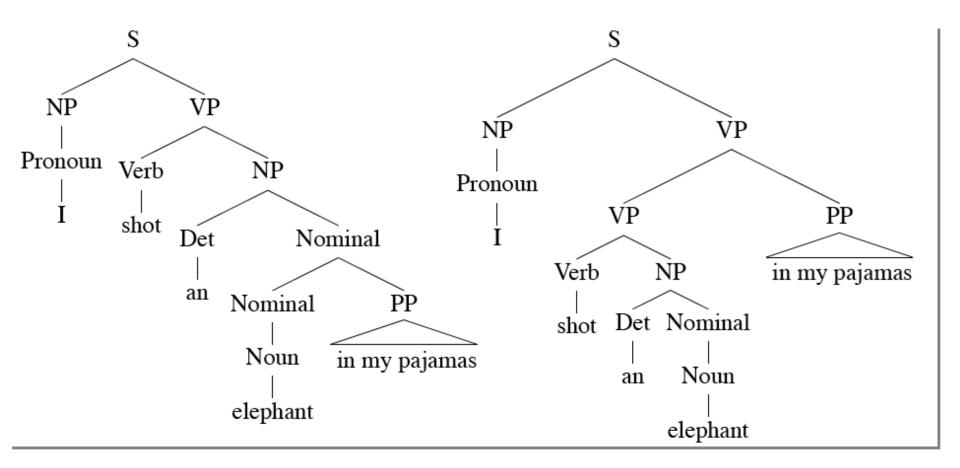
Classical NLP: Parsing

Write symbolic or logical rules:

Gramma	Lexicon	
$ROOT \to S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S\toNP\;VP$	$VP \rightarrow VBP NP$	NNS \rightarrow raises
$NP\toDT\:NN$	$VP \rightarrow VBP NP PP$	$VBP \rightarrow interest$
$NP\toNN\;NNS$	$PP \rightarrow IN NP$	$VBZ \rightarrow raises$

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Ambiguity



Examples from J&M

Attachments

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

The board approved [its acquisition] [by Royal Trustco Ltd.]

___ __{of Toronto]

[for \$27 a share]

[at its monthly meeting].

Syntactic Ambiguities I

- Prepositional phrases: They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective Visiting relatives can be boring. Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions The chicken is ready to eat. The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

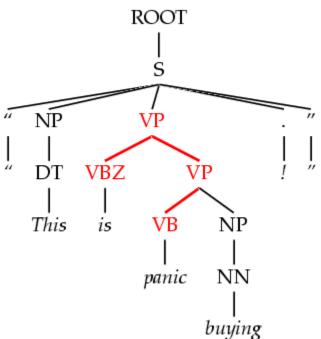
Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers !"

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this



Context-Free Grammars

• A context-free grammar is a tuple $\langle N, \Sigma, S, R \rangle$

- *N* : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- Σ : the set of terminals (the words)
- S : the start symbol
 - Often written as ROOT or TOP
 - *Not* usually the sentence non-terminal S
- *R* : the set of rules
 - Of the form $X \to Y_1 Y_2 \dots Y_n$, with $X \in N$, $n \ge 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
 - Also called rewrites, productions, or local trees

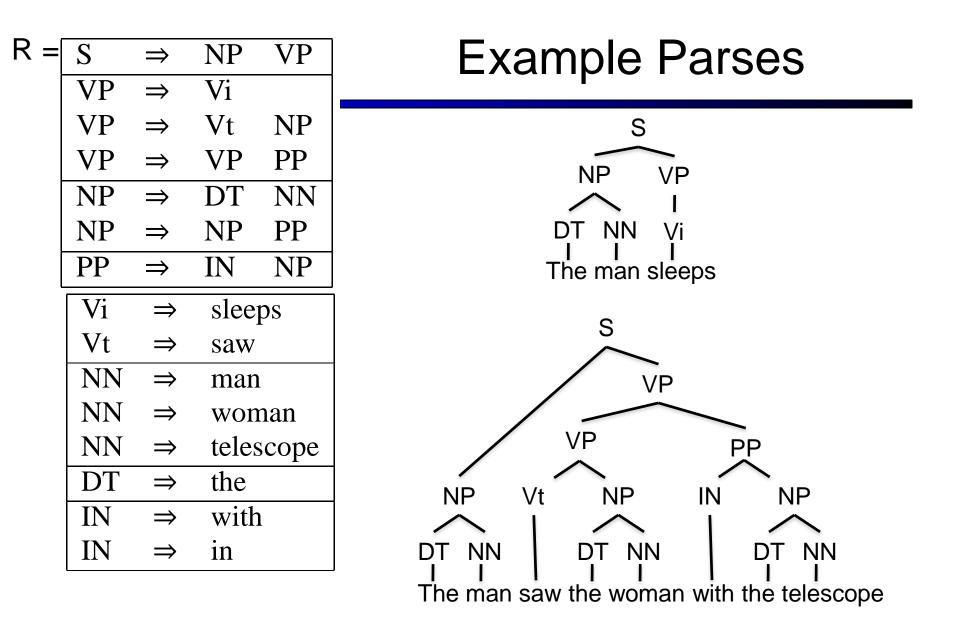
Example Grammar

- $N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$ S = S
- $\Sigma = \{ sleeps, saw, man, woman, telescope, the, with, in \}$

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP
	VP VP VP NP NP	$VP \Rightarrow VP \Rightarrow VP \Rightarrow NP \Rightarrow NP \Rightarrow NP \Rightarrow NP \Rightarrow NP \Rightarrow $	$VP \Rightarrow Vi$ $VP \Rightarrow Vt$ $VP \Rightarrow VP$ $NP \Rightarrow DT$ $NP \Rightarrow NP$

. /	,	/ J
Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition



S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple $\langle N, \Sigma, S, R \rangle$
 - *N* : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - Σ : the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - *R* : the set of rules
 - Of the form $X \to Y_1 Y_2 \dots Y_n$, with $X \in N$, $n \ge 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
- A PCFG adds a distribution q:
 - Probability q(r) for each $r \in R$, such that for all $X \in N$:

$$\sum_{\alpha \to \beta \in R: \alpha = X} q(\alpha \to \beta) = 1$$

PCFG Example

					Vi
S	\Rightarrow	NP	VP	1.0	Vt
VP	\Rightarrow	Vi		0.4	
VP	\Rightarrow	Vt	NP	0.4	NN
	•		- 1-		NN
VP	\Rightarrow	VP	PP	0.2	NN
NP	\Rightarrow	DT	NN	0.3	
NP	\Rightarrow	NP	PP	0.7	DT
			••		IN
PP	\Rightarrow	<u>Р</u>	NP	1.0	IN

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

• Probability of a tree t with rules

$$\alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \ldots, \alpha_n \rightarrow \beta_n$$

is

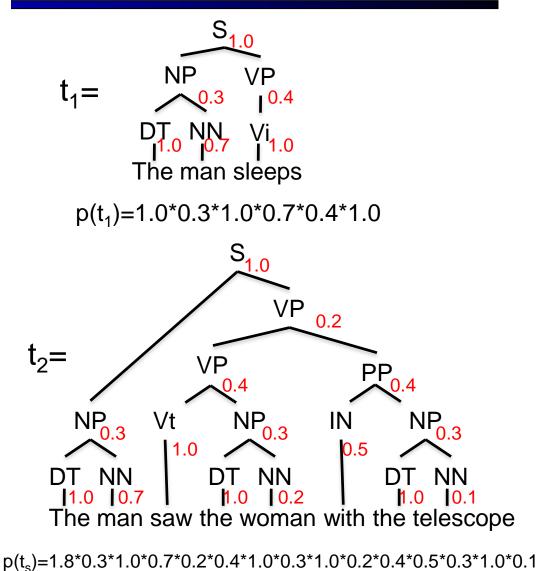
$$p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i)$$

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0
X 7*		1		1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5



PCFGs: Learning and Inference

Model

• The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, i = 1..n

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Learning

 Read the rules off of labeled sentences, use ML estimates for probabilities

$$q_{ML}(\alpha \to \beta) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

and use all of our standard smoothing tricks!

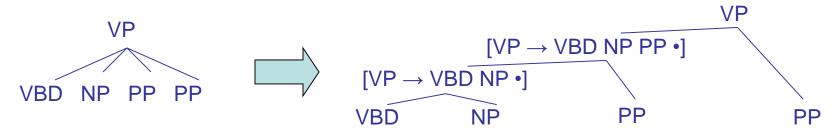
Inference

 For input sentence s, define T(s) to be the set of trees whole *yield* is s (whole leaves, read left to right, match the words in s)

$$t^*(s) = \arg \max_{t \in \mathcal{T}(s)} p(t)$$

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \to Y Z$ or $X \to w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals



- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

Original Grammar

$\begin{array}{l} S \rightarrow NP \; VP \\ S \rightarrow Aux \; NP \; VP \end{array}$	0.8 0.1		
$S \rightarrow VP$	0.1		
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
NP \rightarrow Det Nominal Nominal \rightarrow Noun	0.6 0.3		
Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP VP \rightarrow Verb	0.2 0.5 0.2		
$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.5 0.3 1.0		
Lexicon: Noun \rightarrow book flight meal money 0.1 0.5 0.2 0.2 Verb \rightarrow book include prefer 0.5 0.2 0.3			

CNF Conversion Example

Det \rightarrow the a that this 0.6 0.2 0.1 0.1
Pronoun \rightarrow I he she me
0.5 0.1 0.1 0.3
Proper-Noun → Houston NWA
0.8 0.2
$Aux \rightarrow does$
1.0
Prep \rightarrow from to on near through
0.25 0.25 0.1 0.2 0.2

Original Grammar		Chomsky Normal Form	
$\begin{array}{l} S \rightarrow NP \; VP \\ S \rightarrow Aux \; NP \; VP \end{array}$	0.8 0.1	$S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$	0.8 0.1 1.0
$S \rightarrow VP$	0.1		
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
NP \rightarrow Det Nominal Nominal \rightarrow Noun	0.6 0.3		
Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP VP \rightarrow Verb	0.2 0.5 0.2		
$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.5 0.3 1.0		
Lexicon (See previous slide f Noun \rightarrow book flight meal 0.1 0.5 0.2 Verb \rightarrow book include prefe	money 0.2		
0.5 0.2 0.3			

Original Grammar

Chomsky Normal Form

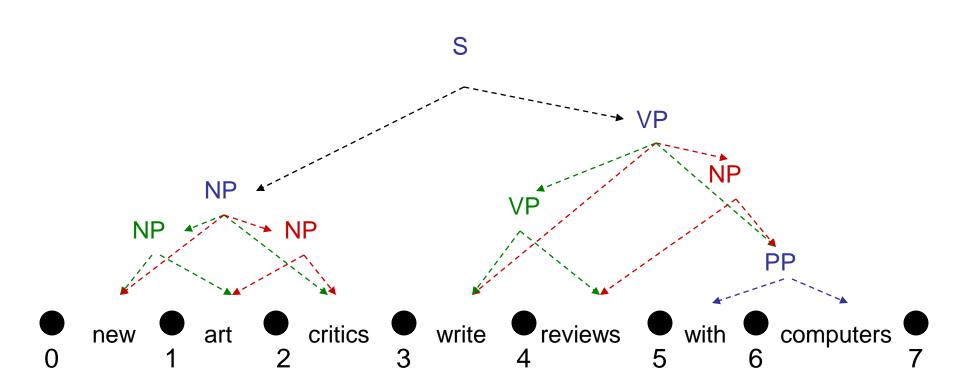
$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
	0.4	$X1 \rightarrow Aux NP$	1.0
$S \rightarrow VP$	0.1	$S \rightarrow book \mid include \mid prefer$	
		$S \rightarrow Verb NP$	
		$S \rightarrow VP PP$	
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
	0.2		
$NP \rightarrow Det Nominal$	0.6		
Nominal \rightarrow Noun	0.3		
Newsia et al. Newsia et Nessa	0.0		
Nominal → Nominal Noun Nominal → Nominal PP	0.2 0.5		
$VP \rightarrow Verb$	0.2		
$VP \rightarrow Verb NP$	0.5		
$VP \rightarrow VP PP$	0.3		
$PP \to Prep \ NP$	1.0		
Lexicon (See previous slide	for full lis	st) ·	
Noun \rightarrow book flight meal			
0.1 0.5 0.2			
Verb \rightarrow book include pre			
0.5 0.2 0.3			

Original Grammar

Chomsky Normal Form

$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
		$X1 \rightarrow Aux NP$	1.0
$S \rightarrow VP$	0.1	$S \rightarrow book \mid include \mid prefer$	
		0.01 0.004 0.006	
		$S \rightarrow Verb NP$	0.05
		$S \rightarrow VP PP$	0.03
$NP \rightarrow Pronoun$	0.2	$NP \rightarrow I$ he she me	
		0.1 0.02 0.02 0.06	
$NP \rightarrow Proper-Noun$	0.2	$NP \rightarrow Houston NWA$	
		0.16 .04	
$NP \rightarrow Det Nominal$	0.6	$NP \rightarrow Det Nominal$	0.6
Nominal \rightarrow Noun	0.3	Nominal \rightarrow book flight meal money	
		0.03 0.15 0.06 0.06	
Nominal \rightarrow Nominal Noun	0.2	Nominal → Nominal Noun	0.2
Nominal \rightarrow Nominal PP	0.5	Nominal → Nominal PP	0.5
$VP \rightarrow Verb$	0.2	$VP \rightarrow book \mid include \mid prefer$	
		0.1 0.04 0.06	
$VP \rightarrow Verb NP$	0.5	$VP \rightarrow Verb NP$	0.5
$VP \rightarrow VP PP$	0.3	$VP \rightarrow VP PP$	0.3
$PP \rightarrow Prep NP$	1.0	$PP \rightarrow Prep NP$	1.0
Lexicon (See previous slide for full list):			
Lexicon (See previous slide for full list) :			
Noun \rightarrow book flight meal money			
0.1 0.5 0.2 0.2			
Verb → book include prefer			
0.5 0.2 0.3			

The Parsing Problem



A Recursive Parser

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?

Dynamic Programming

 We will store: score of the max parse of x_i to x_j with root non-terminal X

$$\pi(i, j, X)$$

So we can compute the most likely parse:

$$\pi(1, n, S) = \arg \max_{t \in \mathcal{T}_G(s)}$$

• Via the recursion:

 $\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$

• With base case:

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

The CKY Algorithm

- Input: a sentence $s = x_1 ... x_n$ and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - For all X in N

[iterate all phrase lengths] [iterate all phrases of length I] [iterate all non-terminals]

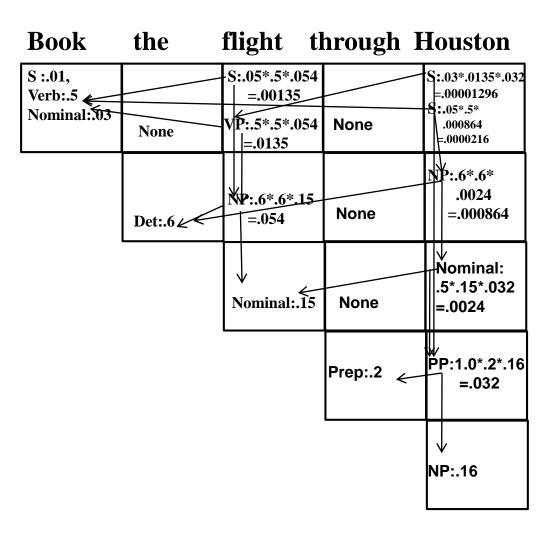
$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

also, store back pointers

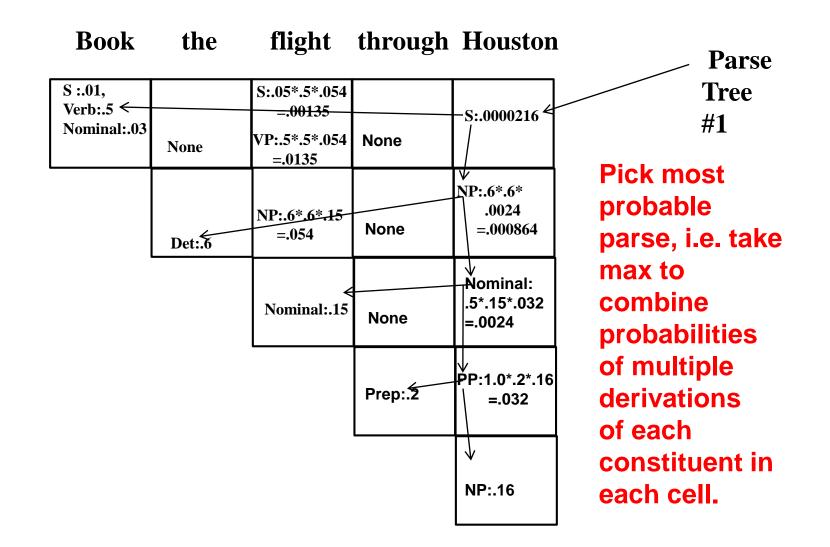
$$bp(i,j,X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

Probabilistic CKY Parser

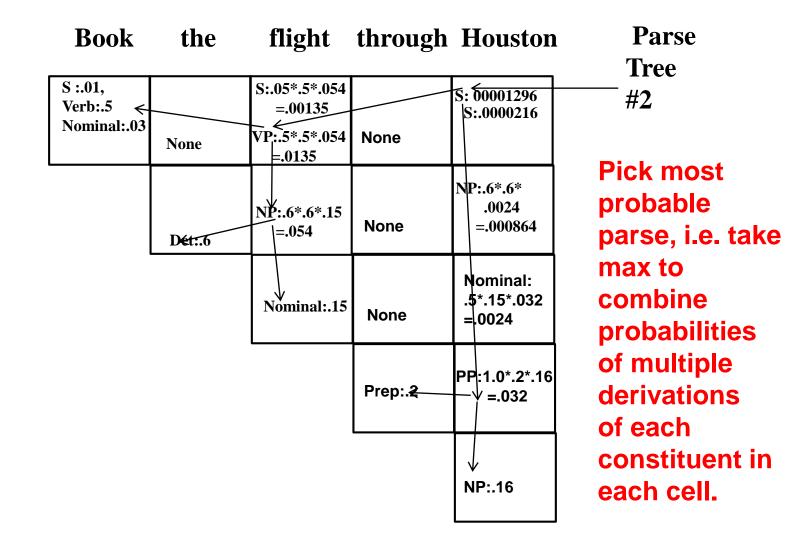
0.8 $S \rightarrow NP VP$ 0.1 $S \rightarrow X1 VP$ 1.0 $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ 0.01 0.004 0.006 $S \rightarrow Verb NP$ 0.05 0.03 $S \rightarrow VP PP$ $NP \rightarrow I$ | he | she | me 0.1 0.02 0.02 0.06 $NP \rightarrow Houston \mid NWA$ 0.16 .04 $Det \rightarrow the \mid a \mid$ an 0.6 0.1 0.05 0.6 $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money 0.03 0.15 0.06 0.06 0.2 Nominal \rightarrow Nominal Nominal 0.5 Nominal \rightarrow Nominal PP Verb \rightarrow book | include | prefer 0.5 0.04 0.06 0.5 $VP \rightarrow Verb NP$ 0.3 $VP \rightarrow VP PP$ **Prep** \rightarrow through | to | from 0.3 0.3 0.2 1.0 $PP \rightarrow Prep NP$



Probabilistic CKY Parser



Probabilistic CKY Parser



Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
 - For the plain treebank grammar:
 - X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
 - Big, but workable.
- Pruning: Beams
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

How much time will it take to parse?

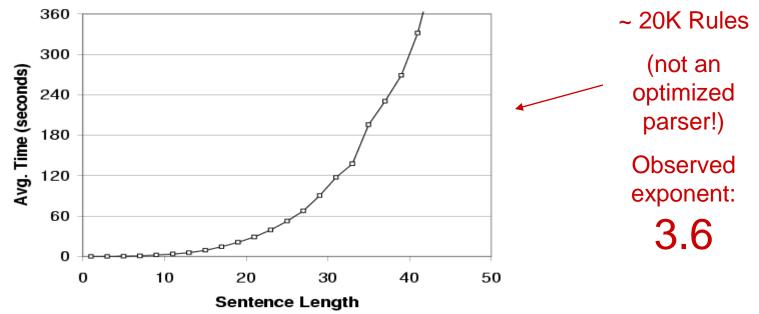
- For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work



- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentences

Time: Practice

Parsing with the vanilla treebank grammar:

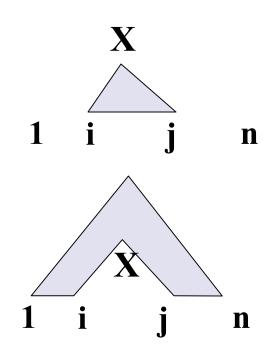


- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

Other Dynamic Programs

Can also compute other quantities:

- Best Inside: score of the max parse of w_i to w_i with root non-terminal X
- Best Outside: score of the max parse of w₀ to w_n with a gap from w_i to w_i rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated
- Sum Inside/Outside: Do sums instead of maxes



Why Chomsky Normal Form?

the

None

Book

Verb:.5 🚄

Nominal: 03

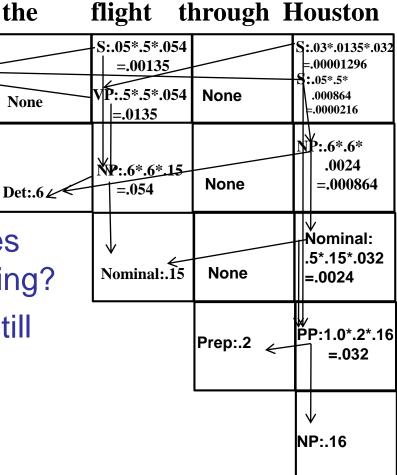
S :.01,

Inference:

- Can we keep N-ary (N > 2) rules and still do dynamic programming?
- Can we keep unary rules and still do dynamic programming?

Learning:

Can we reconstruct the original trees?



CNF + Unary Closure

We need unaries to be non-cyclic

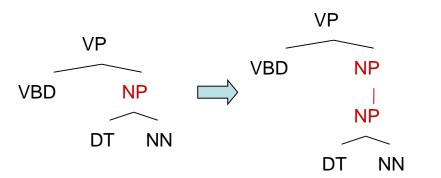
- Calculate closure Close(R) for unary rules in R
 - Add X \rightarrow Y if there exists a rule chain X \rightarrow Z₁, Z₁ \rightarrow Z₂,..., Z_k \rightarrow Y with $q(X\rightarrow Y) = q(X\rightarrow Z_1)^*q(Z_1\rightarrow Z_2)^*...^*q(Z_k\rightarrow Y)$

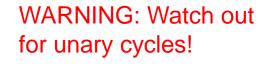
SBAR

S

VP

• Add $X \rightarrow X$ with $q(X \rightarrow X)=1$ for all X in N





SBAR

VP

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about $X \rightarrow Y$ with different unary paths (and scores)?

The CKY Algorithm

- Input: a sentence $s = x_1 ... x_n$ and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - For all X in N

[iterate all phrase lengths] [iterate all phrases of length I] [iterate all non-terminals]

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

also, store back pointers

$$bp(i,j,X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

CKY with Unary Closure

- Input: a sentence $s = x_1 \dots x_n$ and a PCFG = $\langle N, \Sigma, S, R, q \rangle$
- Initialization: For i = 1 ... n:
 - Step 1: for all X in N: $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$
 - Step 2: for all X in N:

$$\pi_U(i, i, X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi(i, i, Y))$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - Step 1: (Binary)
 - For all X in N [iterate all non-terminals]

 $\pi_B(i,j,X) = \max_{X \to YZ \in R, s \in \{i \dots (j-1)\}} (q(X \to YZ) \times \pi_U(i,s,Y) \times \pi_U(s+1,j,Z))$

[iterate all phrase lengths]

[iterate all phrases of length I]

Step 2: (Unary)

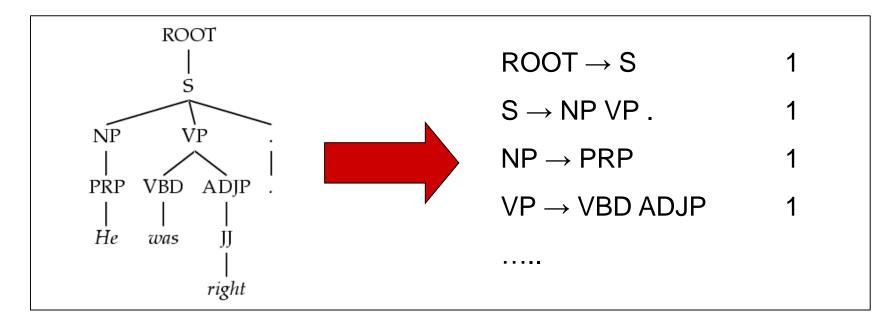
• For all X in N [iterate all non-terminals] $\pi_U(i, j, X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi_B(i, j, Y))$

Treebank Sentences

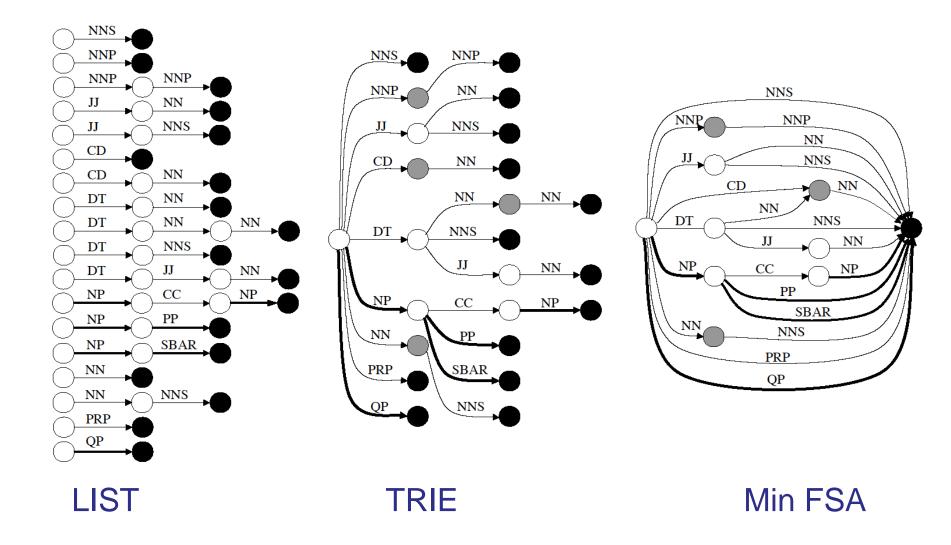
```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                 (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):



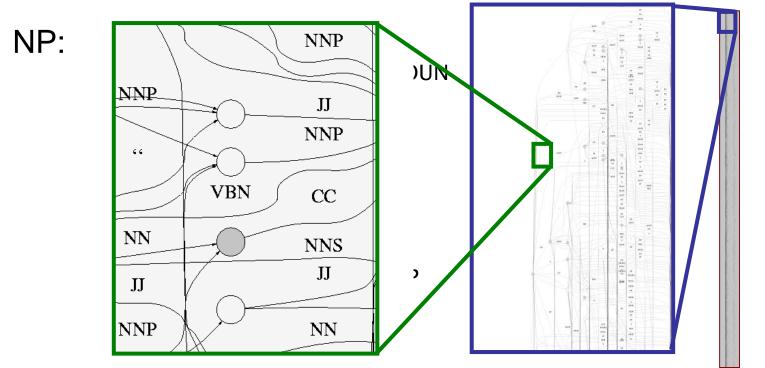
- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.



Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.

Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller



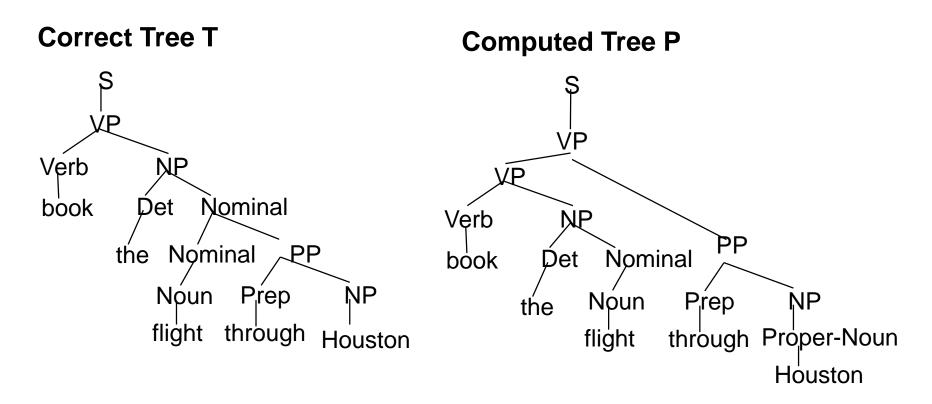
Typical Experimental Setup

Corpus: Penn Treebank, WSJ

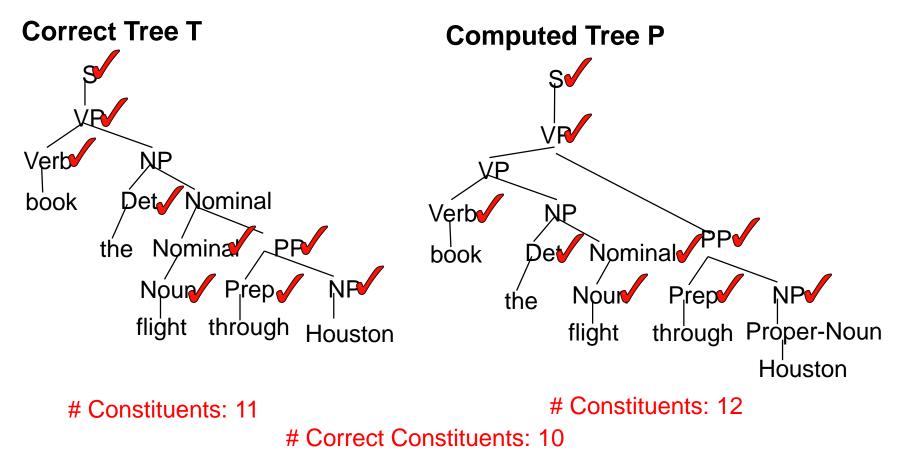
Training:	sections	02-21
Development:	section	22 (here, first 20 files)
Test:	section	23

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP \rightarrow NP CC •

How to Evaluate?



PARSEVAL Example



Recall = 10/11 = 90.9% Precision = 10/12 = 83.3% F₁ = 87.4%

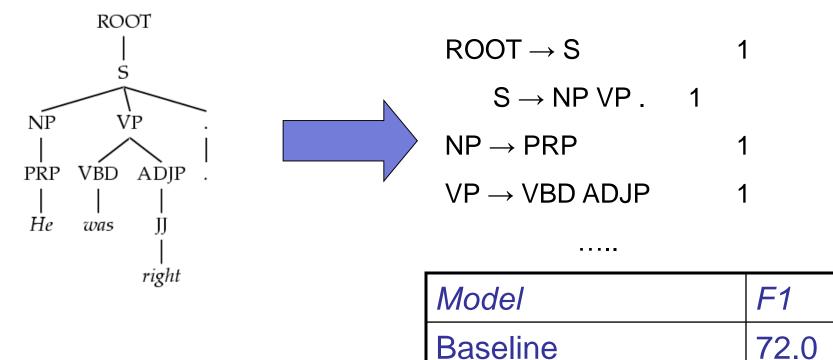
Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system's parse tree and T is the human parse tree (the "gold standard"):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
 - F1= (2 * Precision * Recall) / (Precision + Recall)

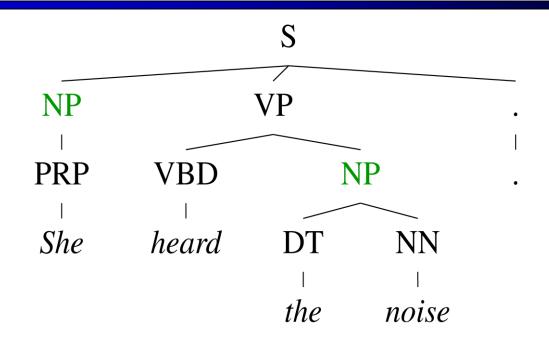
Treebank PCFGs

[Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):



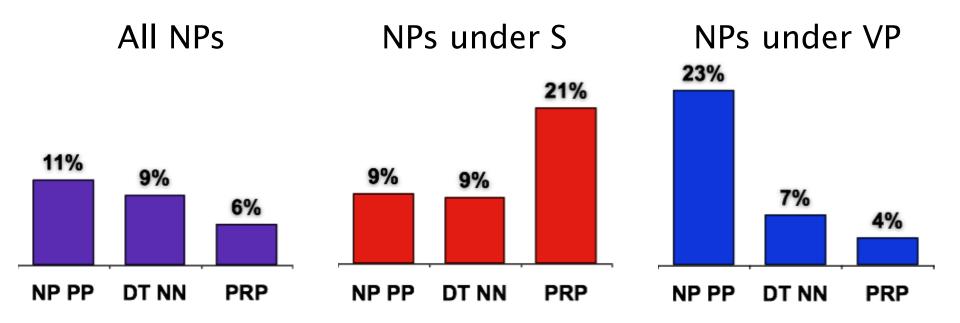
Conditional Independence?



- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

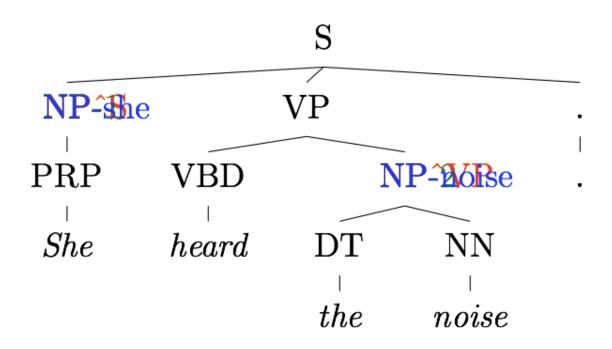
Non-Independence

Independence assumptions are often too strong.



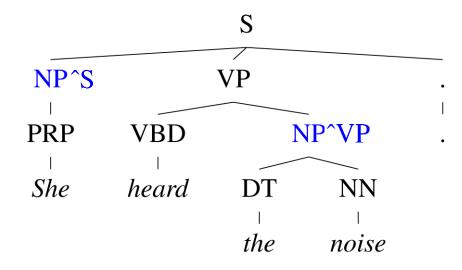
- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement



- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation

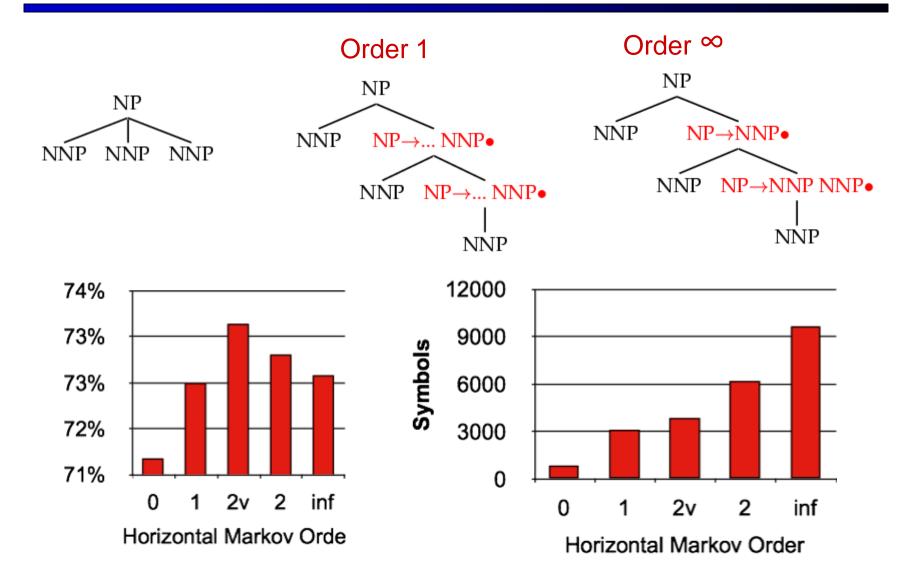
Vertical Markovization

Order 2 Order 1 Vertical Markov order: rewrites S S^ROOT depend on past kNP VP NP[^]S VP^S ancestor nodes. PRP VBD ADJP (cf. parent VBD PRP ADVP^VP annotation) He right was He right was 79% 25000 78% 18750 77% Symbols 76% 12500 75% 74% 6250 73% 72% 0 2v 2 3v 3 2v 2 3v 3 1

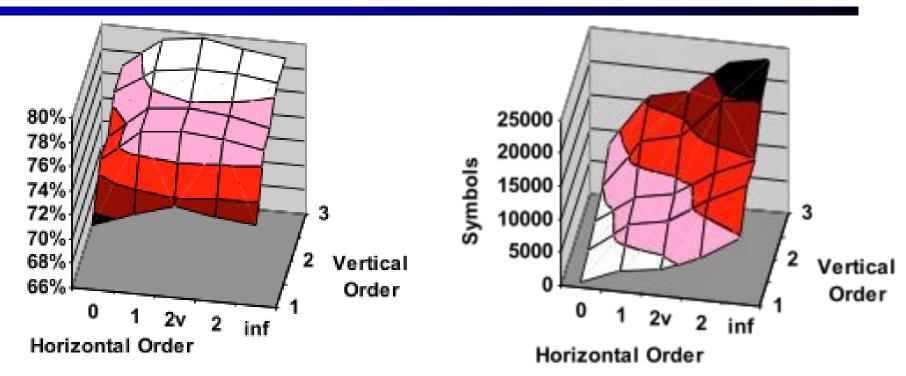
Vertical Markov Order

Vertical Markov Order

Horizontal Markovization



Vertical and Horizontal



- Raw treebank: v=1, h=∞
- Johnson 98: v=2, h=∞
- Collins 99: v=2, h=2
- Best F1: v=3, h=2v

Model	F1	Size
Base: v=h=2v	77.8	7.5K

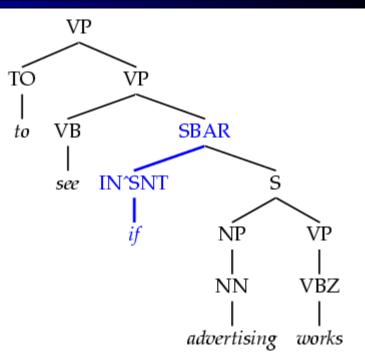
Unlexicalized PCFG Grammar Size

		Horizontal Markov Order				
Vertical Order		h = 0	h = 1	$h \leq 2$	h = 2	$h = \infty$
v = 1	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
v = 2	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
v = 3	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Figure 2: Markovizations: F_1 and grammar size.

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
 - Subdivide the IN tag.



Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

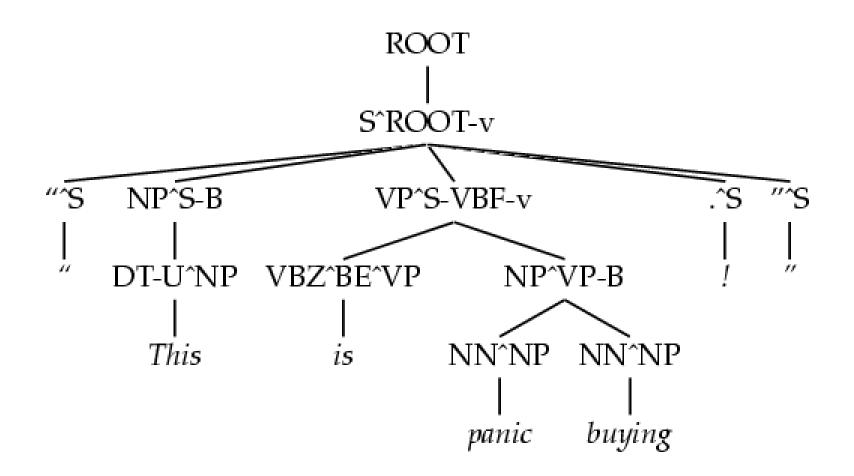
Other Tag Splits

UNARY-DT: mark demonstratives as DT^U	
("the X" vs. "those")	

- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

A Fully Annotated (Unlex) Tree

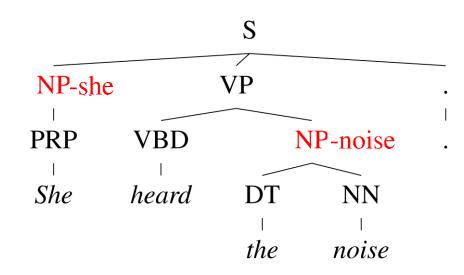


Some Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Unlexicalized	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

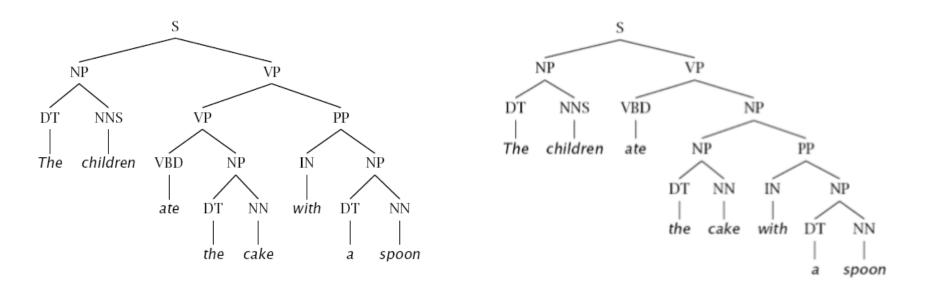
- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

The Game of Designing a Grammar



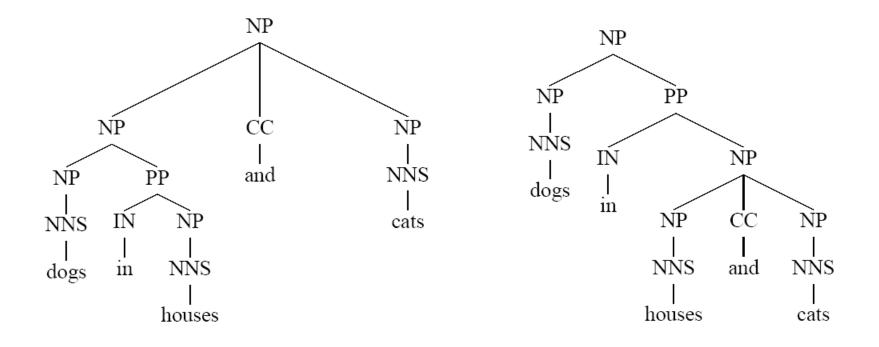
- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation [Johnson '98, Klein and Manning 03]
- Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

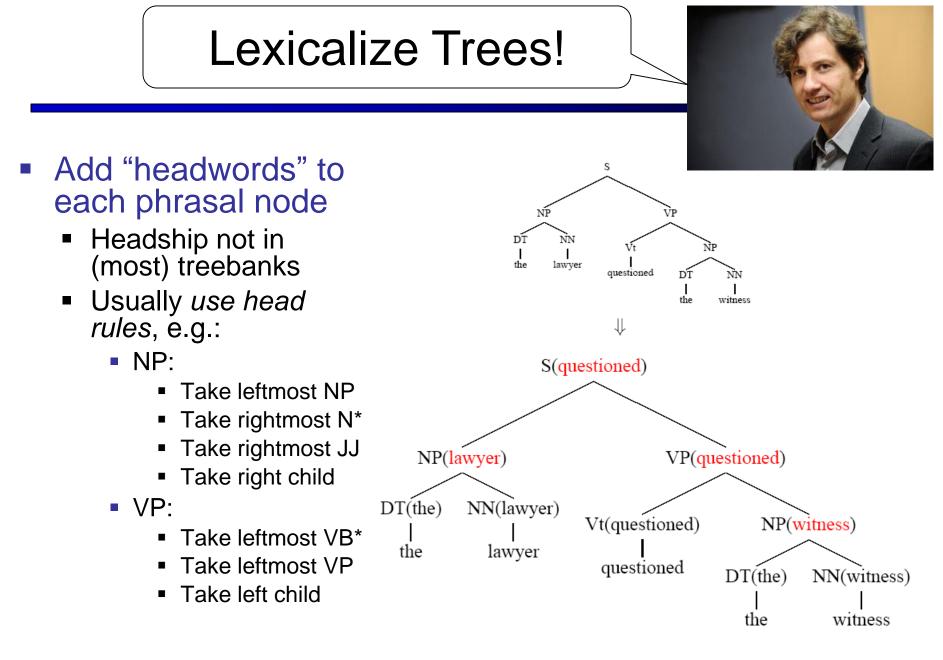


- If we do no annotation, these trees differ only in one rule:
 - $VP \rightarrow VP PP$
 - $NP \rightarrow NP PP$
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs



- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?



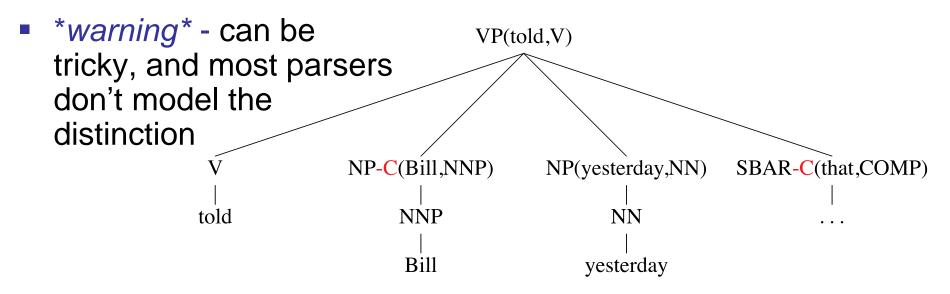
Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

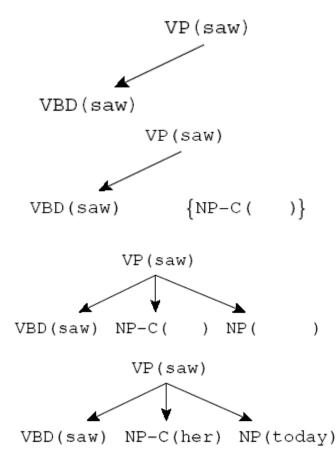
Complement / Adjunct Distinction



- Complement: defines a property/argument (often obligatory), ex: [capitol [of Rome]]
- Adjunct: modifies / describes something (always optional), ex: [quickly ran]
- A Test for Adjuncts: [X Y] --> can claim X and Y
 - [they ran and it happened quickly] vs. [capitol and it was of Rome]

[Collins 99] Lexical Derivation Steps

 Main idea: define a linguistically-motivated Markov process for generating children given the parent



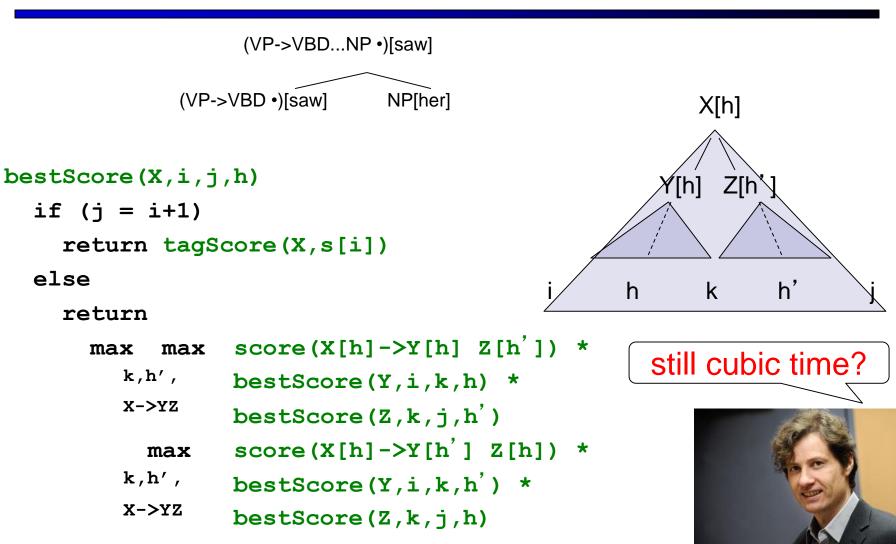
Step 1: Choose a head tag and word

Step 2: Choose a complement bag

Step 3: Generate children (incl. adjuncts)

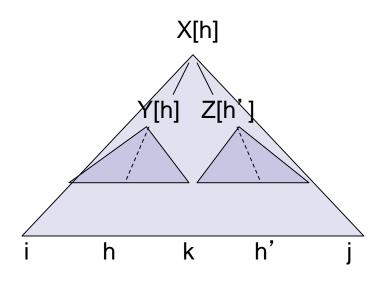
Step 4: Recursively derive children

Lexicalized CKY



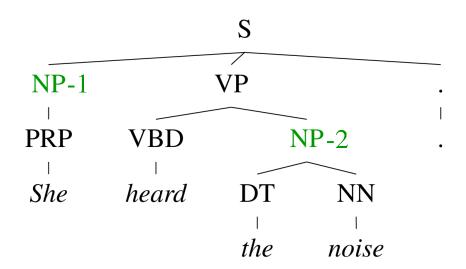
Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)



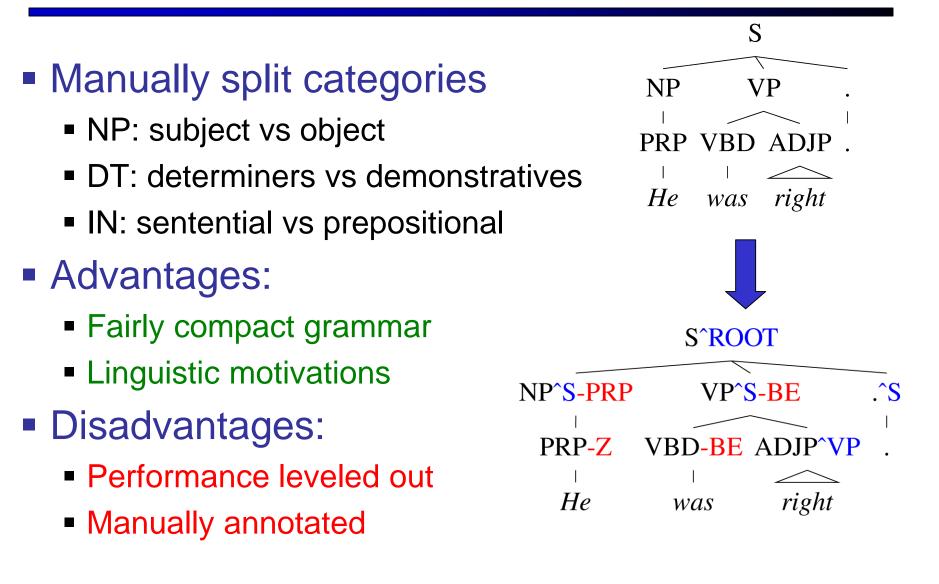
Model	F1
Naïve Treebank Grammar	72.6
Klein & Manning '03	86.3
Collins 99	88.6

The Game of Designing a Grammar



- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson '98]
- Head lexicalization [Collins '99, Charniak '00]
- Automatic clustering?

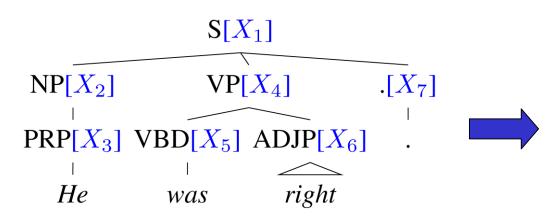
Manual Annotation



Learning Latent Annotations

Latent Annotations:

- Brackets are known
- Base categories are known
- Hidden variables for subcategories



Can learn with EM: like Forward-Backward for HMMs.

Forward/Outside right He was

Backward/Inside

Automatic Annotation Induction

Advantages:

Automatically learned:

Label *all* nodes with latent variables. Same number k of subcategories for all categories.

Disadvantages:

- Grammar gets too large
- Most categories are oversplit while others are undersplit.

Model	F1
Klein & Manning '03	86.3
Matsuzaki et al. '05	86.7

S

VP

right

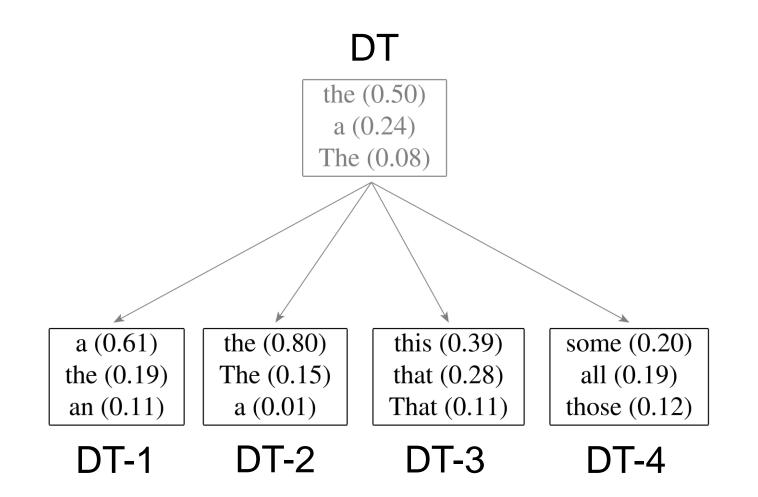
PRP VBD ADIP

was

NP

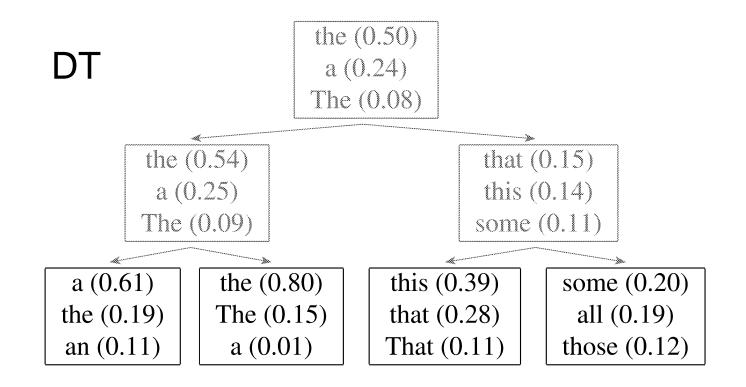
He

Refinement of the DT tag



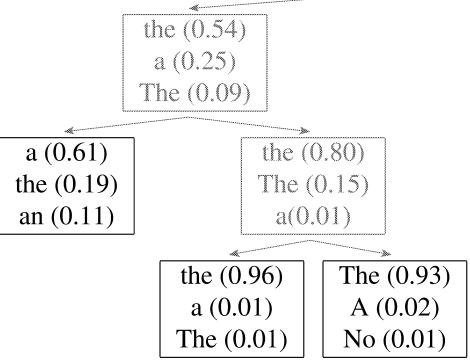
Hierarchical refinement

- Repeatedly learn more fine-grained subcategories
- start with two (per non-terminal), then keep splitting
- initialize each EM run with the output of the last



Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful



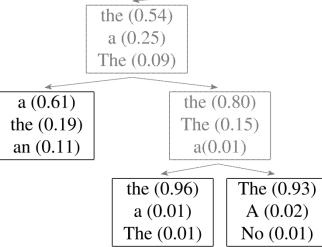
Adaptive Splitting

 Evaluate loss in likelihood from removing each split =

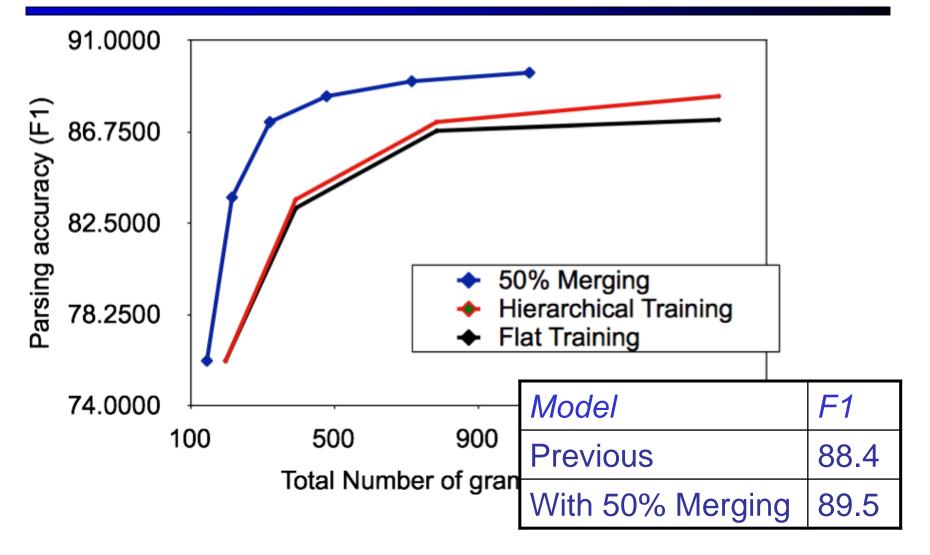
Data likelihood with split reversed

Data likelihood with split

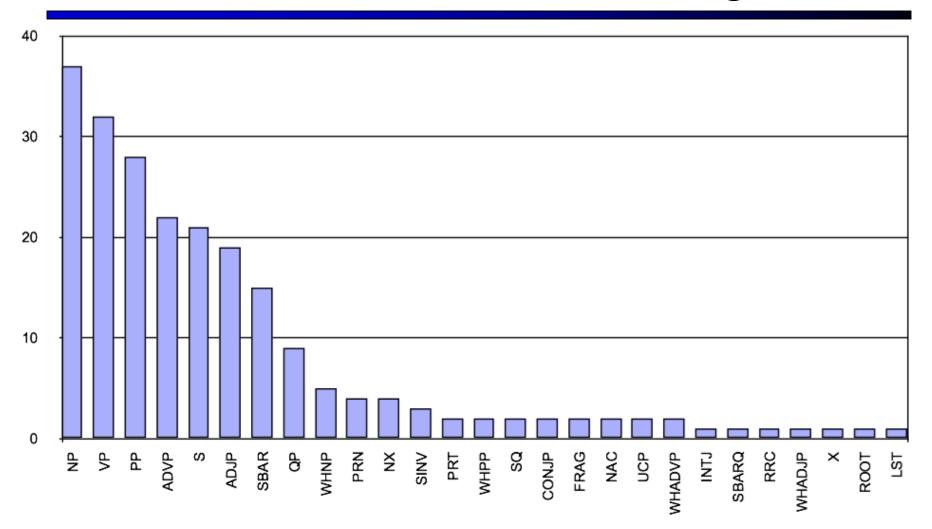
 No loss in accuracy when 50% of the splits are reversed.



Adaptive Splitting Results



Number of Phrasal Subcategories



Final Results

Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
Petrov et. al. 06	90.2	89.7

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	lt	He	I.
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

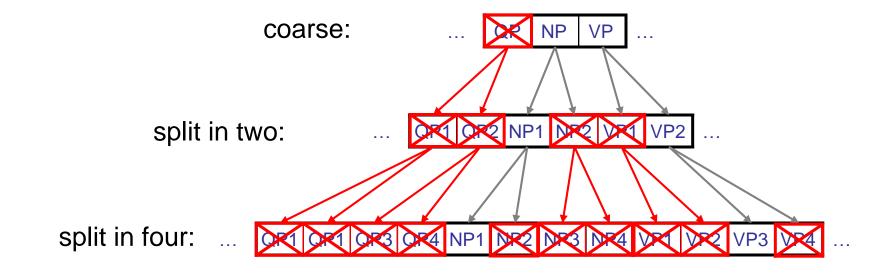
RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Hierarchical Pruning

Parse multiple times, with grammars at different levels of granularity!



	_	_			_					_
split in eight:			 	 		 	 	 	 	

Bracket Posteriors



1621 min **111 min 35 min 15 min** (no search error)

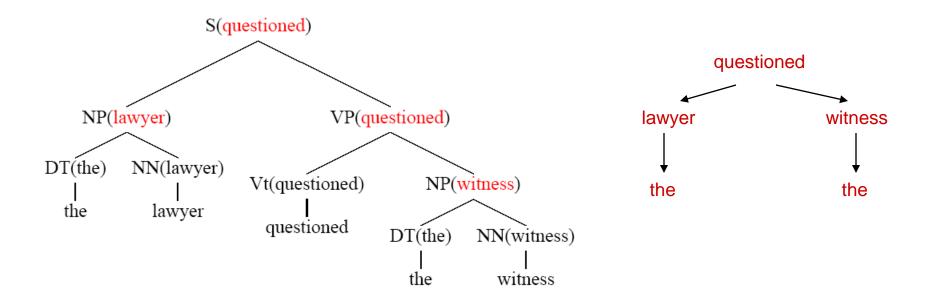
Final Results (Accuracy)

		≤ 40 words F1	all F1
ENG	Charniak&Johnson '05 (generative)	90.1	89.6
G	Split / Merge	90.6	90.1
G	Dubey '05	76.3	-
ER	Split / Merge	80.8	80.1
C	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

Dependency Parsing*

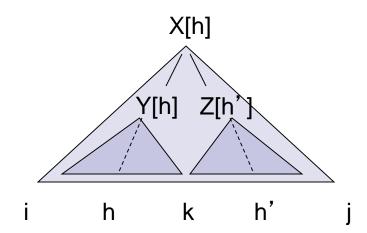
Lexicalized parsers can be seen as producing *dependency trees*

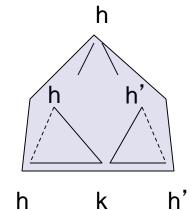


 Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing*

Pure dependency parsing is only cubic [Eisner 99]



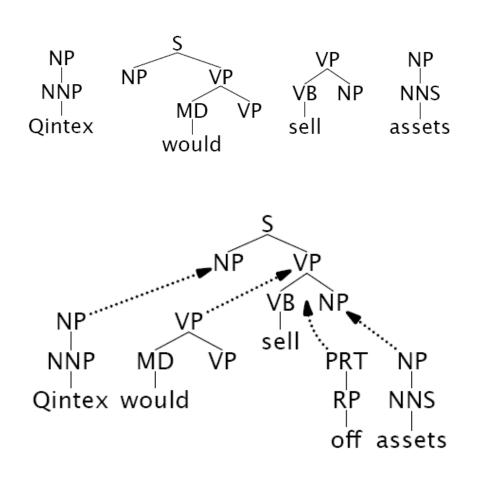


- Some work on *non-projective* dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

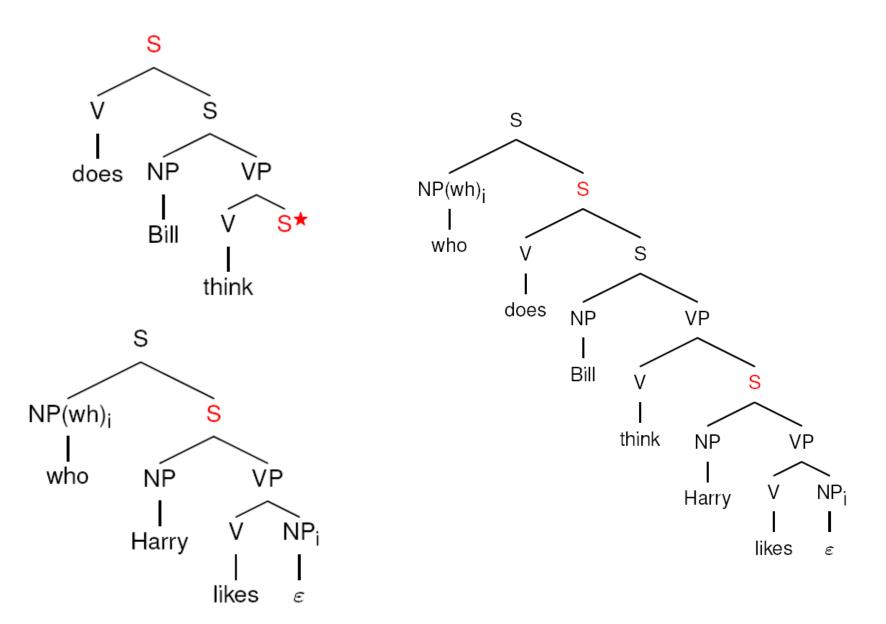


Tree-adjoining grammars*

- Start with local trees
- Can insert structure with *adjunction* operators
- Mildly contextsensitive
- Models longdistance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. crossserial dependencies)



TAG: Long Distance*



CCG Parsing*

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

 $John \vdash \mathsf{NP}$ $shares \vdash \mathsf{NP}$ $buys \vdash (\mathsf{S} \setminus \mathsf{NP}) / \mathsf{NP}$ $sleeps \vdash \mathsf{S} \setminus \mathsf{NP}$ $well \vdash (\mathsf{S} \setminus \mathsf{NP}) \setminus (\mathsf{S} \setminus \mathsf{NP})$

