CSE 517 Natural Language Processing Winter2015

Feature Rich Models

Yejin Choi - University of Washington

[Slides from Jason Eisner, Dan Klein, Luke Zettlemoyer]

Feature Rich Models

- Throw anything you want into the stew
- Add a bonus for this, a penalty for that, etc.

"11,001 New Features for Statistical Machine Translation", (D. Chiang, K. Knight, and W. Wang), NAACL, 2009. Best Paper Award.

Probabilistic Models

(Unstructured) categorization:

Naïve Bayes

Structured prediction:

- HMMs
- PCFG Models
- IBM Models

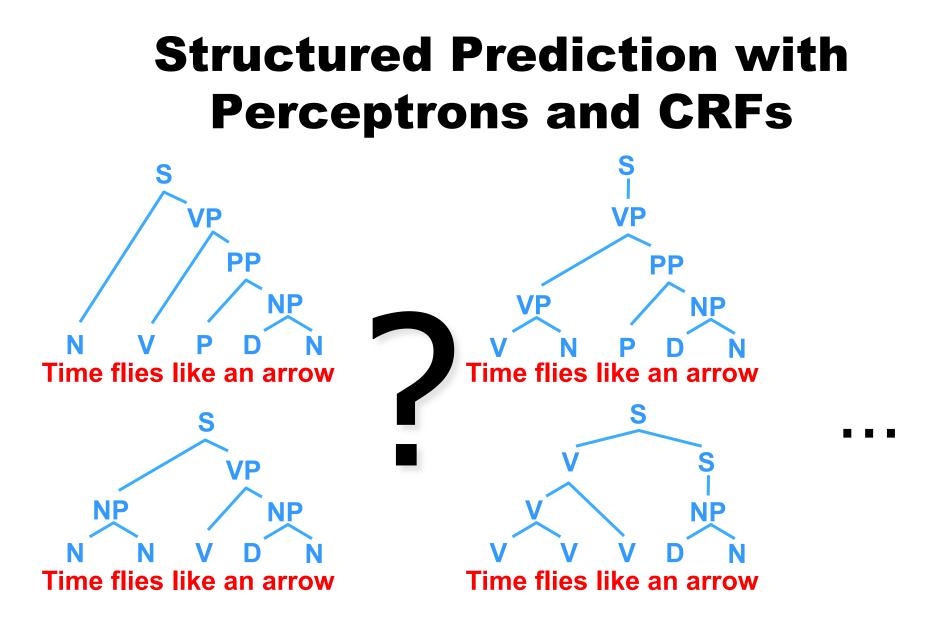
Feature-rich / (Log)-linear Models

(Unstructured) categorization:

- Perceptron
- Maximum Entropy

Structured prediction:

- Perceptron for Structured Prediction
- MEMM (Maximum Entropy Markov Model)
- CRF (Conditional Random Fields)



p(category | message)

goodmail	spam	
Reply today to claim your …	Reply today to claim your …	
goodmail	<mark>spam</mark>	
Wanna get pizza tonight?	Wanna get pizza tonight?	
goodmail	spam	
Thx; consider enlarging the	Thx; consider enlarging the …	
goodmail	spam	
Enlarge your hidden	Enlarge your hidden …	

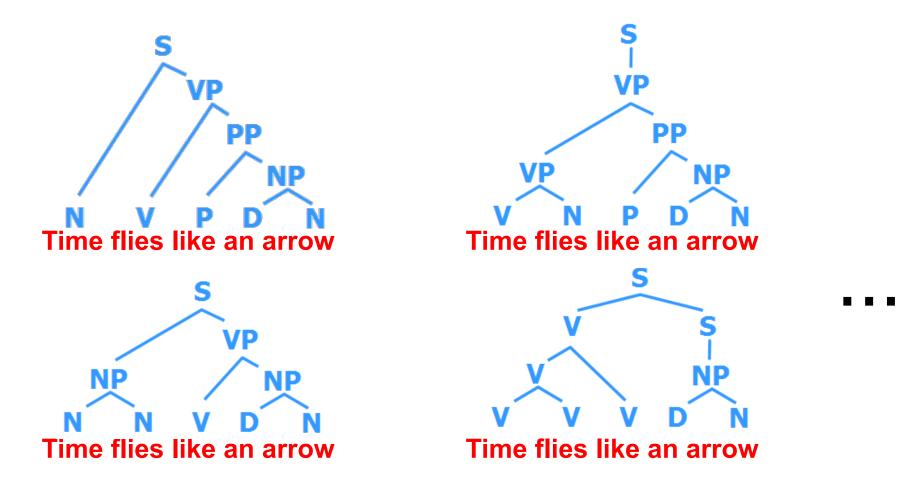
p(RHS | LHS)

 $S \rightarrow NP VP$ $S \rightarrow N VP$ $S \rightarrow NP[+wh] V S/V/NP$ $S \rightarrow VP NP$ $S \rightarrow Det N$ $S \rightarrow PP P$

p(RHS | LHS)

$S \rightarrow NP VP$	$S \rightarrow N VP$	$S \rightarrow NP[+wh] V S/V/NP$
$S \rightarrow VP NP$	S → Det N	S → PP P
$NP \rightarrow NP VP$	$NP \rightarrow N VP$	NP → NP CP/NP
$NP \rightarrow VP NP$	NP → Det N	NP → NP PP

 p(parse | sentence)



p(tag sequence | word sequence)

N V P D N Time flies like an arrow

V N P D N Time flies like an arrow

N N V D N Time flies like an arrow

V V V D N Time flies like an arrow

Today's general problem

- Given some input x
- Consider a set of candidate outputs y
 - Classifications for x
 - Taggings of x
 - Parses of x
 - Translations of x

(small number: often just 2)

(exponentially many)
(exponential, even infinite)
(exponential, even infinite)

· ...

Structured prediction

Want to find the "best" y, given x

Scoring by Linear Models

- Given some input x
- Consider a set of candidate outputs y
- Define a scoring function score(x,y)

Linear function: A sum of feature weights (you pick the features!)

Weight of feature k (learned or set by hand)

Choose y that maximizes score(x,y)

Scoring by Linear Models

- Given some input x
- Consider a set of candidate outputs y
- Define a scoring function score(x,y)

Linear function: A sum of feature weights (you pick the features!)

(learned or set by hand)

$$\operatorname{score}(x, y) = \quad \vec{\theta} \cdot \vec{f}(x, y)$$

This linear decision rule is sometimes called a "perceptron." It's a "structured perceptron" if it does structured prediction (number of y candidates is unbounded, e.g., grows with |x|).

Choose y that maximizes score(x,y)

Probabilistic Models

(Unstructured) categorization:

Naïve Bayes

Structured prediction:

- HMMs
- PCFG Models
- IBM Models

Feature-rich / (Log)-linear Models

(Unstructured) categorization:

- Perceptron
- Maximum Entropy

Structured prediction:

- Perceptron for Structured Prediction
- MEMM (Maximum Entropy Markov Model)
- CRF (Conditional Random Fields)

Perceptron Training Algorithm

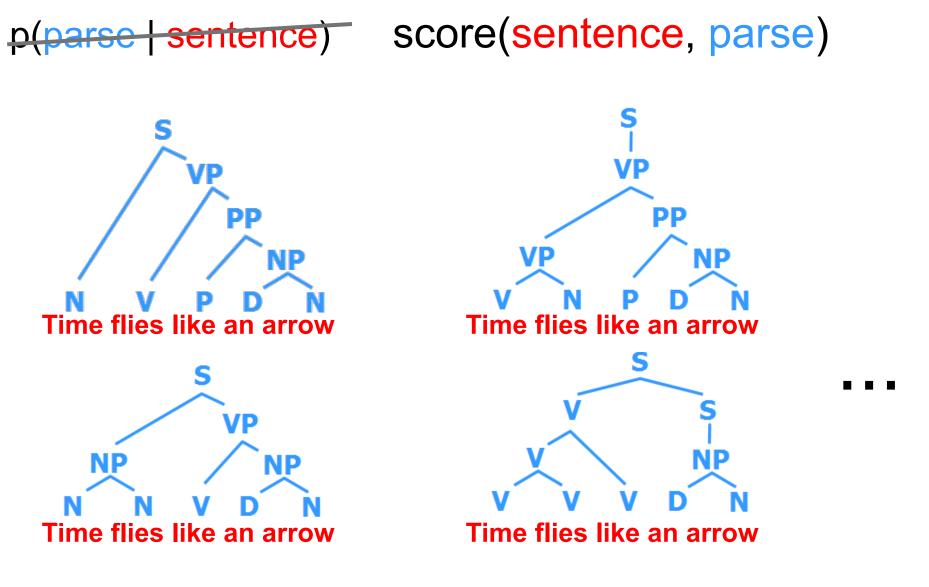
- initialize θ (usually to the zero vector)
- repeat:
 - Pick a training example (x,y)
 - Model predicts y* that maximizes score(x,y*)
 - Update weights by a step of size $\varepsilon > 0$: $\theta = \theta + \varepsilon \cdot (f(x,y) - f(x,y^*))$

If model prediction was correct (y=y*), θ doesn't change.
So once model predicts <u>all</u> training examples correctly, stop.
If some θ can do the job, this eventually happens!
(If not, θ will oscillate, but the <u>average</u> θ from all steps will settle down. So return that eventual average.)

Perceptron Training Algorithm

- initialize θ (usually to the zero vector)
- repeat:
 - Pick a training example (x,y)
 - Model predicts y* that maximizes score(x,y*)
 - Update weights by a step of size $\varepsilon > 0$: $\theta = \theta + \varepsilon \cdot (f(x,y) - f(x,y^*))$

If model prediction was wrong (y≠y*), then we must have
 score(x,y) ≤ score(x,y*) instead of > as we want.
Equivalently, θ·f(x,y) ≤ θ·f(x,y*)
Equivalently, θ·(f(x,y) - f(x,y*)) ≤ 0 but we want it positive.
Our update increases it (by ε · || f(x,y) - f(x,y*) ||² ≥ 0)



Nuthin' but adding weights

- **n-grams:** ... + log p(w7 | w5, w6) + log p(w8 | w6, w7) + ...
- PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
- HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ...
- Noisy channel: [log p(source)] + [log p(data | source)]
- Cascade of composed FSTs:
 [log p(A)] + [log p(B | A)] + [log p(C | B)] + ...
- Naïve Bayes:

log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) ...

What if our weights were arbitrary real numbers?

Change log p(this | that) to θ (this ; that)

- **n-grams:** ... + log p(w7 | w5, w6) + log p(w8 | w6, w7) + ...
- PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
- HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ...
- Noisy channel: [log p(source)] + [log p(data | source)]
- Cascade of FSTs:
 - $\left[\log p(A)\right] + \left[\log p(B \mid A)\right] + \left[\log p(C \mid B)\right] + \dots$
- Naïve Bayes:

log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) ...

What if our weights were arbitrary real numbers?

Change log p(this | that) to θ (this ; that)

- **n-grams:** ... + $\theta(w7; w5, w6) + \theta(w8; w6, w7) + ...$
- **PCFG:** $\theta(NP VP; S) + \theta(Papa; NP) + \theta(VP PP; VP) ...$
- HMM tagging: ... + θ(t7; t5, t6) + θ(w7; t7) + ...
- Noisy channel: $\begin{bmatrix} \theta(\text{source}) \end{bmatrix} + \begin{bmatrix} \theta(\text{data ; source}) \end{bmatrix}$
- Cascade of FSTs:
 - $\begin{bmatrix} \theta(A) \end{bmatrix} + \begin{bmatrix} \theta(B; A) \end{bmatrix} + \begin{bmatrix} \theta(C; B) \end{bmatrix} + \dots$

Naïve Bayes:

 θ (Class) + θ (feature1 ; Class) + θ (feature2 ; Class) ...

In practice, θ is a hash table Maps from feature name (a string or object) to feature weight (a float) e.g., θ (NP VP; S) = weight of the S \rightarrow NP VP rule, say -0.1 or +1.3

What if our weights were arbitrary real numbers?

Change log p(this | that) to θ (this ; that)

■ **n-grams:** ... + $\theta(w5 w6 w7) + \theta(w6 w7 w8) + ...$ WCFG PCFG: $\theta(S \rightarrow NP VP) + \theta(NP \rightarrow Papa) + \theta(VP \rightarrow VP PP) ...$

- HMM tagging: ... + $\theta(t5 t6 t7) + \theta(t7 \rightarrow w7) + ...$
- Noisy channel: $\begin{bmatrix} \theta(\text{source}) \end{bmatrix} + \begin{bmatrix} \theta(\text{source}, \text{data}) \end{bmatrix}$
- Cascade of FSTs:
 - $\begin{bmatrix} \theta(A) \end{bmatrix} + \begin{bmatrix} \theta(A, B) \end{bmatrix} + \begin{bmatrix} \theta(B, C) \end{bmatrix} + \dots$

• Naïve Bayes: $\theta(Class) + \theta(Class, feature 1) + \theta(Class, feature 2) ...$

Finding the best y given x

 At **both** training & test time, given input x, perceptron picks y that maximizes score(x,y)

$$\operatorname{score}(x,y) = \sum_{k} \theta_k f_k(x,y)$$

- How do we find argmax_y score(x,y)?
 - Easy when only a few candidates y (e.g., text classification)
 - Just try each y in turn.
 - Harder for structured prediction: but you now know how!
 - Find the best string, path, or tree ...
 - Viterbi for HMM, CKY for trees, stack decoding for MT
 - Dynamic programming if possible

Why would we switch from probabilities to scores?

- 1. "Discriminative" training (e.g., perceptron) might work better.
 - It tries to optimize weights to actually predict the right y for each x.
 - More important than maximizing log p(x,y) = log p(y|x) + log p(x), as we've been doing in HMMs and PCFGs.
 - Satisfied once the right y wins. The example puts no more pressure on the weights to raise log p(y|x). And <u>never</u> pressures us to raise log p(x).

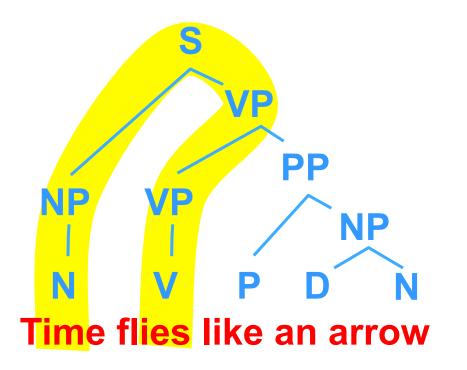
2. Having more freedom in the weights might help?

- Now weights can be positive or negative.
- Exponentiated weights no longer have to sum to 1.
- But turns out new θ vectors can't do more than the old restricted ones.
 - Roughly, for every WCFG there's an equivalent PCFG.
 - Though it's true a regularizer might favor one of the new ones.

3. We can throw lots more features into the stewpot.

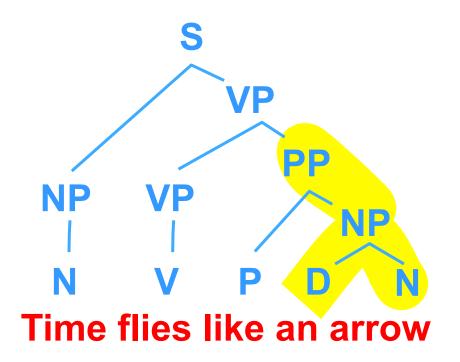
- Allows model to capture more of the useful predictive patterns!
- So, what features can we throw in <u>efficiently</u>?

Cross-rule substructures



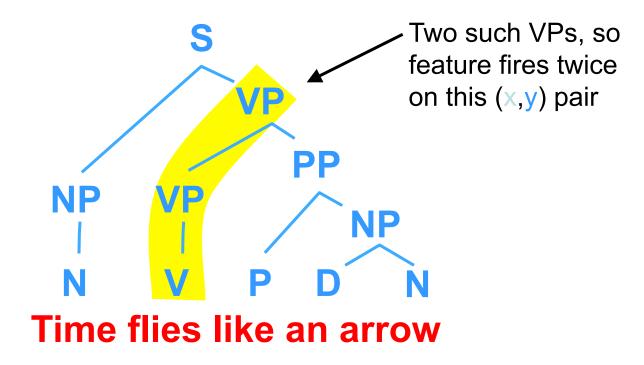
Count of "flies" as a verb with subject "time"

Cross-rule substructures



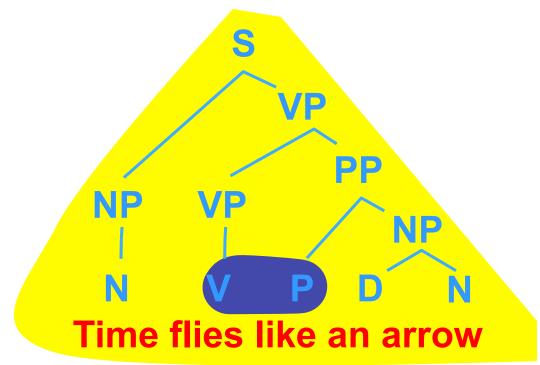
- Count of "flies" as a verb with subject "time"
- Count of NP → D N when the NP is the object of a preposition

Cross-rule substructures

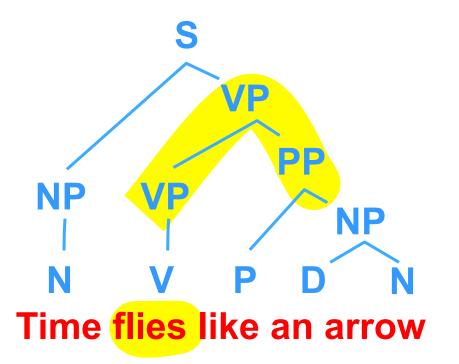


- Count of "flies" as a verb with subject "time"
- Count of NP → D N when the NP is the object of a preposition
- Count of VPs that contain a V

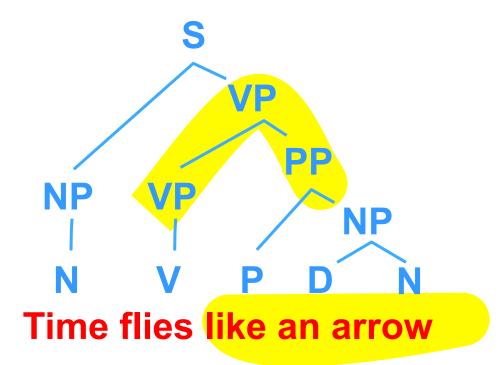
Global features



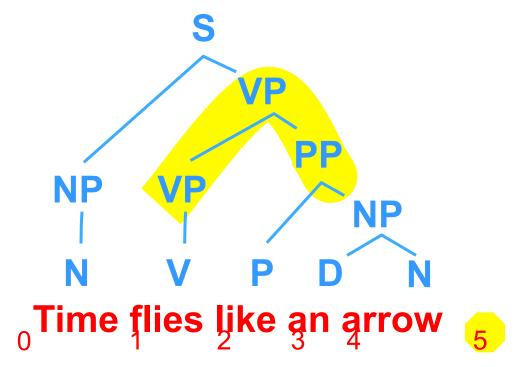
- Count of "NP and NP" when the two NPs have very different size or structure [this feature has weight < 0]
- The number of PPs is even
- The depth of the tree is prime ③
- Count of the tag bigram V P in the preterminal seq



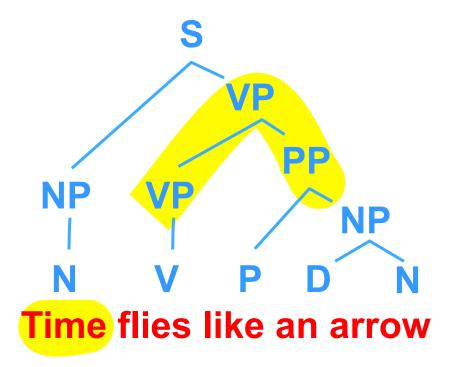
■ Count of VP → VP PP whose first word is "flies"



- Count of VP → VP PP whose first word is "flies"
- Count of VP → VP PP whose right child has width 3



- Count of VP → VP PP whose first word is "flies"
- Count of VP → VP PP whose right child has width 3
- Count of $VP \rightarrow VP$ PP at the end of the input



- Count of VP → VP PP whose first word is "flies"
- Count of VP → VP PP whose right child has width 3
- Count of $VP \rightarrow VP$ PP at the end of the input
- Count of VP → VP PP right after a capitalized word

In the case of tagging ...

NVPDNTime flies like an arrow

- Count of tag P as the tag for "like"
- Count of tag P
- Count of tag P in the middle third of the sentence
- Count of tag bigram V P
- Count of tag bigram V P followed by "an"
- Count of tag bigram V P where P is the tag for "like"
- Count of tag bigram V P where both words are lowercase

Overview: POS tagging Accuracies

~90% / ~50%

~95% / ~55%

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++): 96.2% / 86.0%

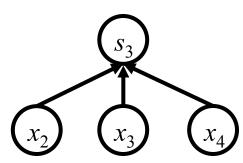
- What if feature-rich classifier that predicts each POS tag one at a time?
- Upper bound: ~98%

What about better features?

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one
 - What about looking at a word and its environment, but no sequence information?
 - Add in previous / next word
 - Previous / next word shapes
 - Occurrence pattern features
 - Crude entity detection
 - Phrasal verb in sentence?
 - Conjunctions of these things

Uses lots of features: > 200K

the ____ X ___ X [X: x X occurs] ___ (Inc.|Co.) put



Probabilistic Models

(Unstructured) categorization:

Naïve Bayes

Structured prediction:

- HMMs
- PCFG Models
- IBM Models

Feature-rich / (Log)-linear Models

(Unstructured) categorization:

Perceptron

Maximum Entropy

Structured prediction:

- Perceptron for Structured Prediction
- MEMM (Maximum Entropy Markov Model)
- CRF (Conditional Random Fields)

Maximum Entropy (MaxEnt) Models

• Also known as "Log-linear" Models (*linear if you take log*)

$$\mathsf{P}(\mathbf{y}|\mathbf{x},\mathbf{w}) = \frac{\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}))}{\sum_{\mathbf{y}'}\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}'))}$$

• The feature vector representation may include redundant and overlapping features

Training MaxEnt Models

 Maximizing the likelihood of the training data incidentally maximizes the entropy (hence "maximum entropy")

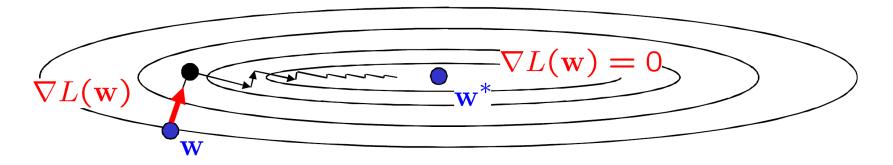
$$\mathsf{P}(\mathbf{y}|\mathbf{x},\mathbf{w}) = \frac{\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}))}{\sum_{\mathbf{y}'}\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}'))} \quad \longleftarrow \quad \mathsf{Make positive} \\ \longleftarrow \quad \mathsf{Normalize}$$

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} \mathsf{P}(\mathbf{y}^{i} | \mathbf{x}^{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

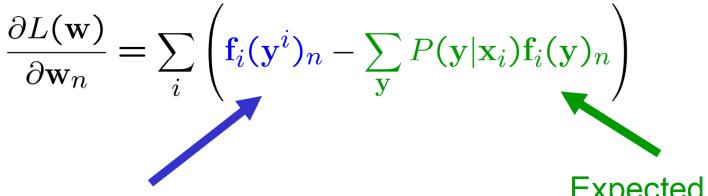
$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Convex Optimization for Training L(w)



- The likelihood function is convex. (can get global optimum)
- Many optimization algorithms/software available.
 - Gradient ascent (descent), Conjugate Gradient, L-BFGS, etc
- All we need are:
 - (1) evaluate the function at current 'w'
 - (2) evaluate its derivative at current 'w'

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$



Total count of feature n in correct candidates Expected count of feature n in predicted candidates

Training with Regularization

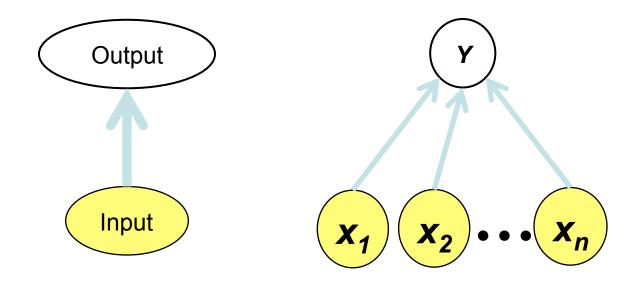
$$L(\mathbf{w}) = -k||\mathbf{w}||^{2} + \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}^{i}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{n}} = -2k\mathbf{w}_{n} + \sum_{i} \left(\mathbf{f}_{i}(\mathbf{y}^{i})_{n} - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i})\mathbf{f}_{i}(\mathbf{y})_{n} \right)$$
Expected count of feature n in predicted candidates
Total count of feature n

in correct candidates

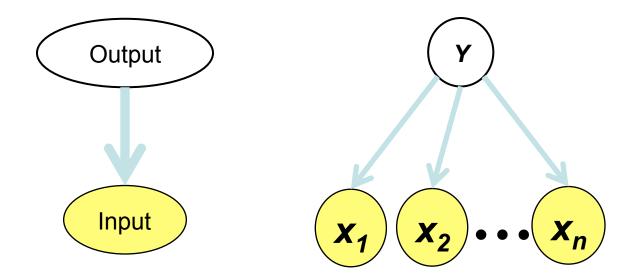
Graphical Representation of MaxEnt

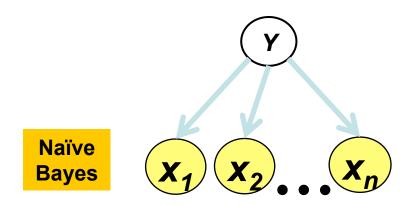
$$\mathsf{P}(\mathbf{y}|\mathbf{x},\mathbf{w}) = \frac{\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}))}{\sum_{\mathbf{y}'}\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{y}'))}$$



Graphical Representation of Naïve Bayes

$$P(X \mid Y) = \prod_{j=1} P(x_j \mid Y)$$





MaxEnt

Y

X₂

Xn

X₁

Naïve Bayes Classifier	Maximum Entropy Classifier
 <i>Generative</i>" models → p(<u>input</u> output) → For instance, for text categorization,	 <i>Discriminative</i>" models → p(output <u>input</u>) → For instance, for text categorization,
P(words category) → Unnecessary efforts on generating input	P(category words) → Focus directly on predicting the output
➔ Independent assumption among input variables: Given the category, each word is generated independently from other words (too strong assumption in reality!)	➔ By conditioning on the entire input, we don't need to worry about the independent assumption among input variables
Cannot incorporate arbitrary/redundant/	Can incorporate arbitrary features:
overlapping features	redundant and overlapping features

Overview: POS tagging Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):

- ~90% / ~50%
 - ~95% / ~55%
- 96.2% / 86.0%
 - 96.8% / 86.8%
- Q: What does this say about sequence models?
- Q: How do we add more features to our sequence models?
- Upper bound: ~98%

Probabilistic Models

(Unstructured) categorization:

Naïve Bayes

Structured prediction:

- HMMs
- PCFG Models
- IBM Models

Feature-rich / (Log)-linear Models

(Unstructured) categorization:

Perceptron

Maximum Entropy

Structured prediction:

 Perceptron for Structured Prediction

MEMM (Maximum Entropy Markov Model)

 CRF (Conditional Random Fields)

MEMM Taggers

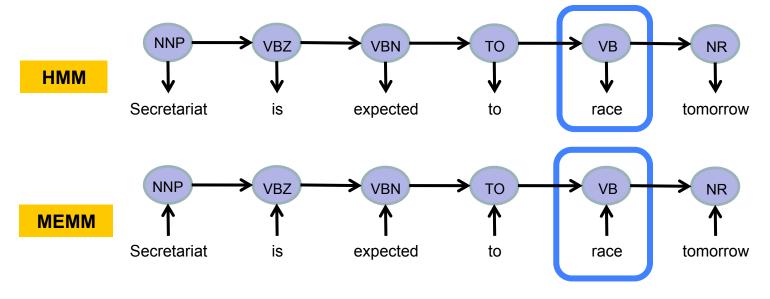
One step up: also condition on previous tags

$$p(s_1 \dots s_m | x_1 \dots x_m) = \prod_{i=1}^m p(s_i | s_1 \dots s_{i-1}, x_1 \dots x_m)$$
$$= \prod_{i=1}^m p(s_i | s_{i-1}, x_1 \dots x_m)$$

 Train up p(s_i|s_{i-1},x₁...x_m) as a discrete log-linear (maxent) model, then use to score sequences

$$p(s_i|s_{i-1}, x_1 \dots x_m) = \frac{\exp\left(w \cdot \phi(x_1 \dots x_m, i, s_{i-1}, s_i)\right)}{\sum_{s'} \exp\left(w \cdot \phi(x_1 \dots x_m, i, s_{i-1}, s')\right)}$$

- This is referred to as an MEMM tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What's the advantage of beam size 1?

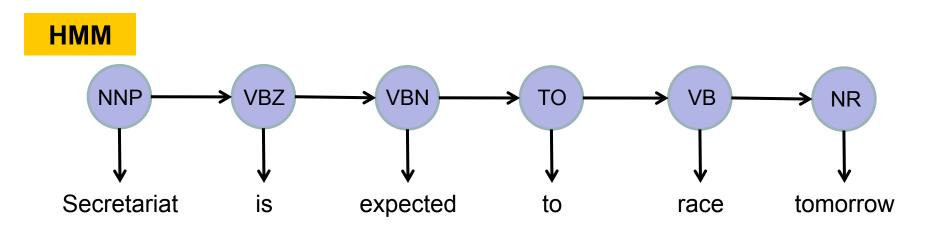


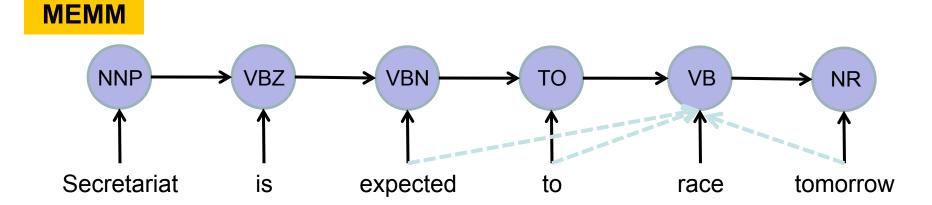
НММ	МЕММ
 "Generative" models → joint probability p(words, tags) → "generate" input (in addition to tags) → but we need to predict tags, not words! 	 "Discriminative" or "Conditional" models → conditional probability p(tags words) → "condition" on input → Focusing only on predicting tags
Probability of each slice = emission * transition = p(word_i tag_i) * p(tag_i tag_i-1) =	Probability of each slice = p(tag_i tag_i-1, word_i) or p(tag_i tag_i-1, all words)

→ Cannot incorporate long distance features

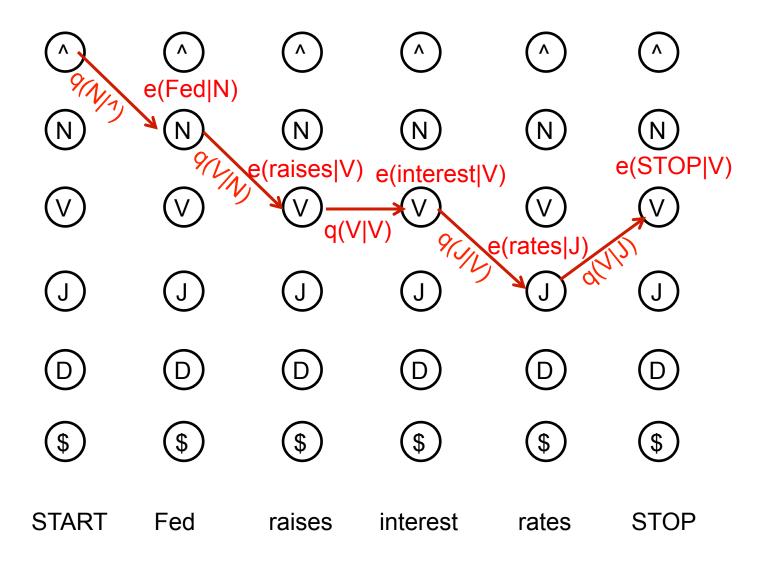
→ Can incorporate long distance features

HMM v.s. MEMM

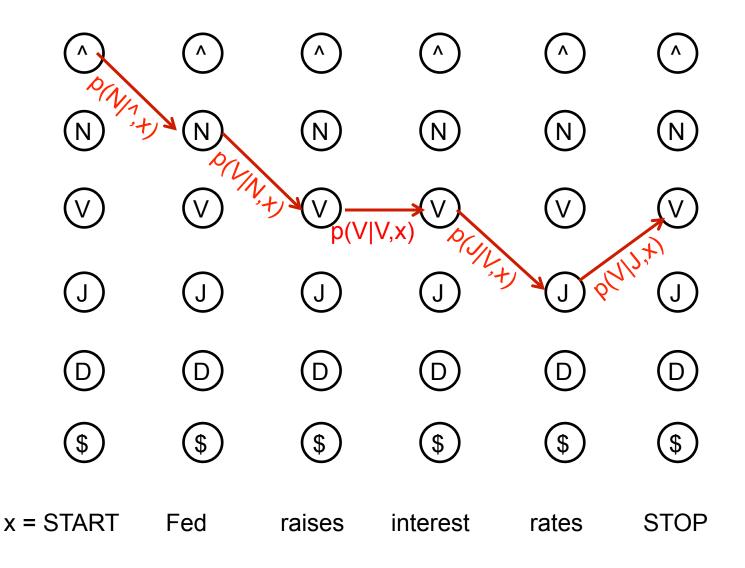




The HMM State Lattice / Trellis (repeat slide)



The MEMM State Lattice / Trellis



Decoding: $p(s_1...s_m|x_1...x_m) = \prod_{i=1}^m p(s_i|s_1...s_{i-1}, x_1...x_m)$

- Decoding maxent taggers:
 - Just like decoding HMMs
 - Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):
 - Define $\pi(i, s_i)$ to be the max score of a sequence of length i ending in tag s_i $\pi(i, s_i) = \max_{s_{i-1}} e(x_i | s_i) q(s_i | s_{i-1}) \pi(i-1, s_{i-1})$
- Viterbi algorithm (Maxent):
 - Can use same algorithm for MEMMs, just need to redefine π(i,s_i) !

$$\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i-1, s_{i-1})$$

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:

- ~90% / ~50%
 - ~95% / ~55%
- 96.2% / 86.0%
- 96.8% / 86.8%
- 96.9% / 86.9%

Upper bound: ~98%

Global Discriminative Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train require repeated inference on training set
- Differences can vary in importance, depending on task
- However: one issue worth knowing about in local models
 - "Label bias" and other explaining away effects
 - MEMM taggers' local scores can be near one without having both good "transitions" and "emissions"
 - This means that often evidence doesn't flow properly
 - Why isn't this a big deal for POS tagging?
 - Also: in decoding, condition on predicted, not gold, histories

Probabilistic Models

(Unstructured) categorization:

Naïve Bayes

Structured prediction:

- HMMs
- PCFG Models
- IBM Models

Feature-rich / (Log)-linear Models

(Unstructured) categorization:

Perceptron

Maximum Entropy

Structured prediction:

Perceptron for Structured Prediction

MEMM (Maximum Entropy Markov Model)

 CRF (Conditional Random Fields)

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors

Sentence: $x = x_1 \dots x_m$

Tag Sequence:

y=s₁...s_m

- Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights
 - Visit training instances (x_i,y_i) one by one
 - Make a prediction

$$y^* = \arg\max_y w \cdot \phi(x_i, y)$$

- If correct (y*==y_i): no change, goto next example!
- If wrong: adjust weights

$$w = w + \phi(x_i, y_i) - \phi(x_i, y^*)$$

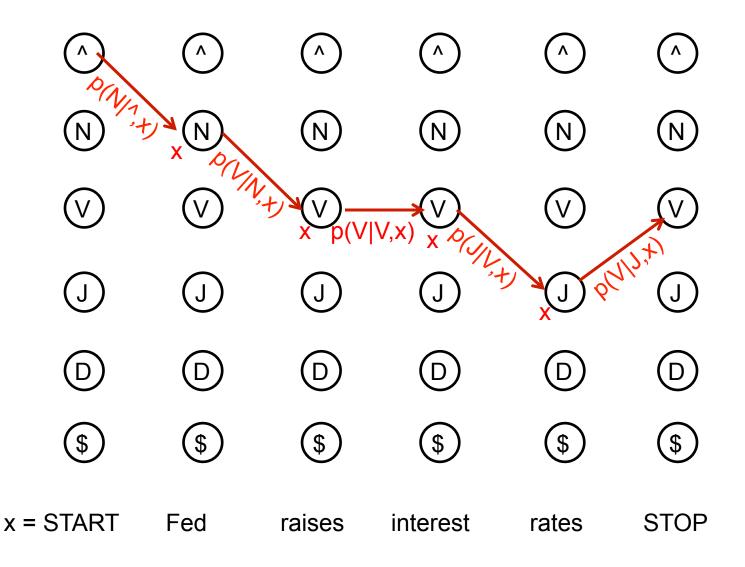
Challenge: How to compute argmax efficiently?

Decoding

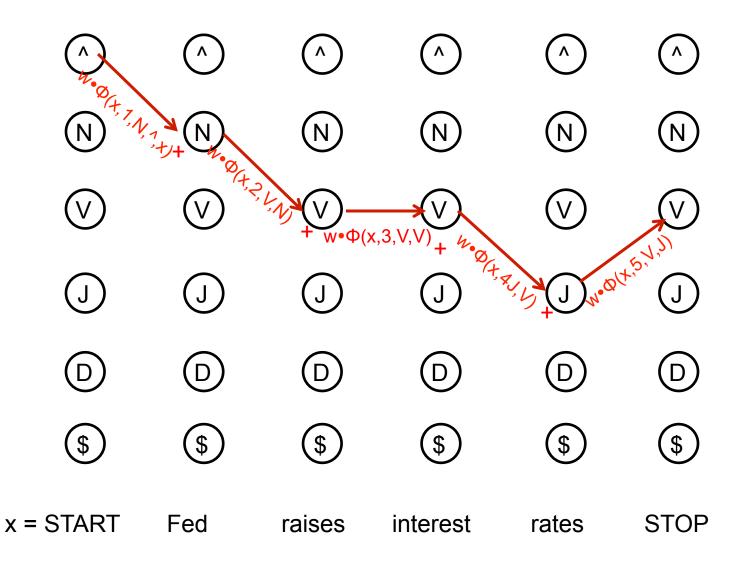
- Linear Perceptron $s^* = \arg \max_s w \cdot \Phi(x,s) \cdot \theta$
 - Features must be local, for x=x₁...x_m, and s=s₁...s_m

$$\Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

The MEMM State Lattice / Trellis (repeat)



The Perceptron State Lattice / Trellis



Decoding

- Linear Perceptron $s^* = \arg \max_s w \cdot \Phi(x, s) \cdot \theta$
 - Features must be local, for x=x₁...x_m, and s=s₁...s_m

$$\Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

Define π(i,s_i) to be the max score of a sequence of length i ending in tag s_i

$$\pi(i, s_i) = \max_{s_{i-1}} w \cdot \phi(x, i, s_{i-i}, s_i) + \pi(i - 1, s_{i-1})$$

- Viterbi algorithm (HMMs): $\pi(i, s_i) = \max_{s_{i-1}} e(x_i | s_i) q(s_i | s_{i-1}) \pi(i-1, s_{i-1})$
- Viterbi algorithm (Maxent): $\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i-1, s_{i-1})$

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:
 - Perceptron

- ~90% / ~50%
 - ~95% / ~55%
- 96.2% / 86.0%
- 96.8% / 86.8%
- 96.9% / 86.9%
- 96.7% / ??

• Upper bound: ~98%

Probabilistic Models

(Unstructured) categorization:

Naïve Bayes

Structured prediction:

- HMMs
- PCFG Models
- IBM Models

Feature-rich / (Log)-linear Models

(Unstructured) categorization:

Perceptron

Maximum Entropy

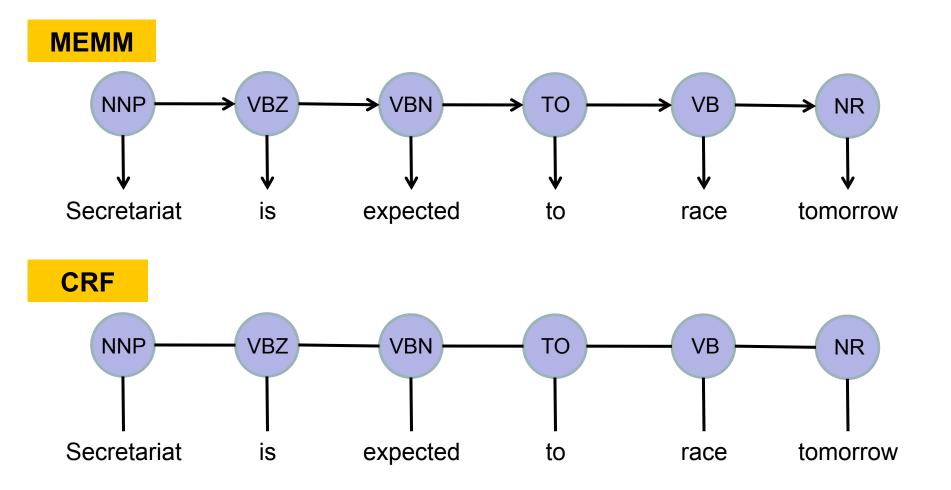
Structured prediction:

Perceptron for Structured

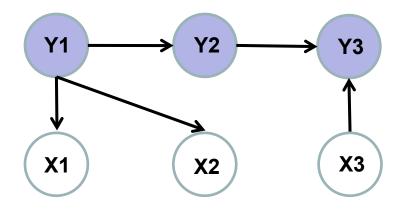
Prediction

- MEMM (Maximum Entropy Markov Model)
- CRF (Conditional Random Fields)

MEMM v.s. CRF (Conditional Random Fields)

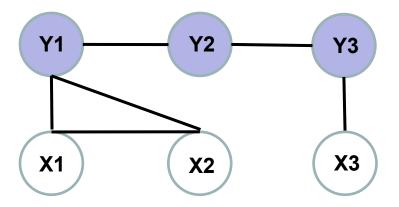


Graphical Models



- Conditional probability for each node
 - e.g. p(Y3 | Y2, X3) for Y3
 - e.g. p(X3) for X3
- Conditional independence
 - e.g. p(Y3 | Y2, X3) = p(Y3 | Y1, Y2, X1, X2, X3)
- Joint probability of the entire graph
 - = product of conditional probability of each node

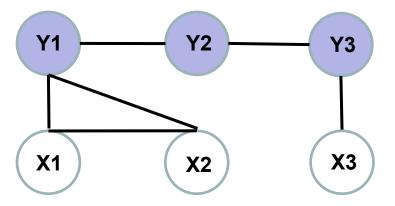
Undirected Graphical Model Basics



- Conditional independence
 - e.g. p(Y3 | all other nodes) = p(Y3 | Y3' neighbor)
- No conditional probability for each node
- Instead, "potential function" for each clique
 - e.g. ϕ (X1, X2, Y1) or ϕ (Y1, Y2)
- Typically, log-linear potential functions

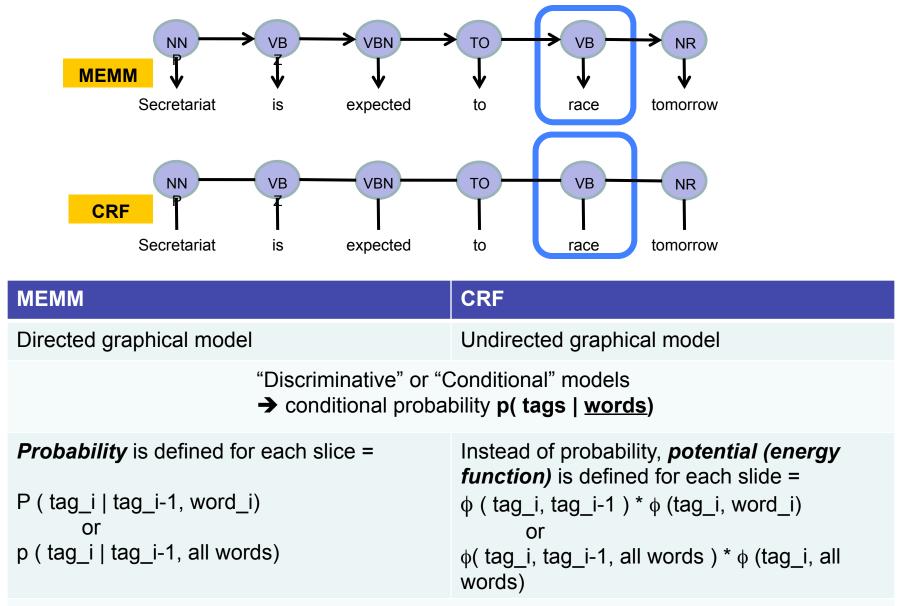
→ ϕ (Y1, Y2) = exp Σ_k w_k f_k (Y1, Y2)

Undirected Graphical Model Basics



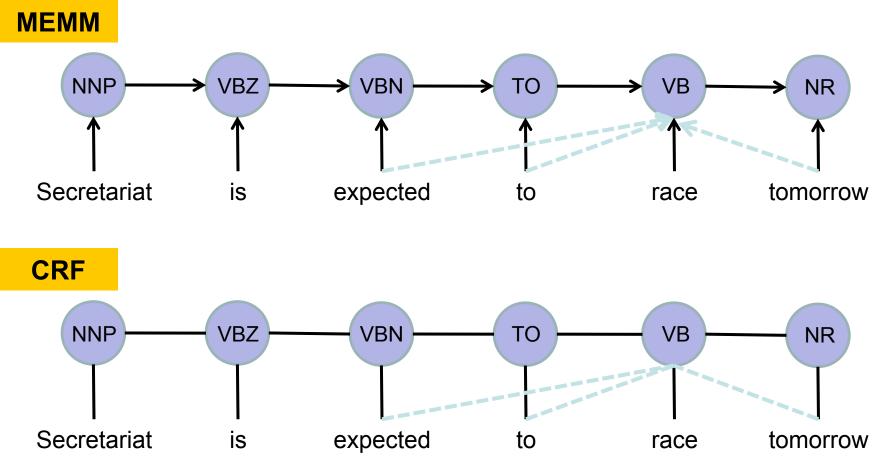
Joint probability of the entire graph

$$P(\vec{Y}) = \frac{1}{Z} \prod_{\text{clique } C} \varphi(\vec{Y}_C)$$
$$Z = \sum_{\vec{Y}} \prod_{\text{clique } C} \varphi(\vec{Y}_C)$$



→ Can incorporate long distance features

MEMM v.s. CRF



Conditional Random Fields (CRFs)

[Lafferty, McCallum, Pereira 01]

Maximum entropy (logistic regression)

Sentence:
$$x=x_1...x_m$$

 $p(y|x;w) = \frac{\exp(w \cdot \phi(x,y))}{\sum_{y'} \exp(w \cdot \phi(x,y'))}$
Tag Sequence: $y=s_1...s_m$

- Learning: maximize the (log) conditional likelihood of training data $\{(x_i, y_i)\}_{i=1}^n$

$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^n \left(\phi_j(x_i, y_i) - \sum_y p(y|x_i; w) \phi_j(x_i, y) \right) - \lambda w_j$$

- Computational Challenges?
 - Most likely tag sequence, normalization constant, gradient

- CRFs Decoding $s^* = \arg \max_s p(s|x;w)$

Features must be local, for x=x₁...x_m, and s=s₁...s_m

$$p(s|x;w) = \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

$$\arg\max_{s} \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} = \arg\max_{s} \exp\left(w \cdot \Phi(x,s)\right)$$

$$= \arg\max_{s} w \cdot \Phi(x,s)$$

Same as Linear Perceptron!!!

$$\pi(i, s_i) = \max_{s_{i-1}} \phi(x, i, s_{i-i}, s_i) + \pi(i - 1, s_{i-1})$$

CRFs: Computing Normalization*

$$p(s|x;w) = \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$
$$\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right) = \sum_{s'} \exp\left(\sum_{j} w \cdot \phi(x,j,s_{j-1},s_j)\right)$$
$$= \sum_{s'} \prod_{j} \exp\left(w \cdot \phi(x,j,s_{j-1},s_j)\right)$$

Define norm(i,s_i) to sum of scores for sequences ending in position i

$$norm(i, y_i) = \sum_{s_{i-1}} \exp(w \cdot \phi(x, i, s_{i-1}, s_i)) norm(i-1, s_{i-1})$$

Forward Algorithm! Remember HMM case:

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$

Could also use backward?

CRFs: Computing Gradient*

$$p(s|x;w) = \frac{\exp\left(w \cdot \Phi(x,s)\right)}{\sum_{s'} \exp\left(w \cdot \Phi(x,s')\right)} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$
$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^{n} \left(\Phi_j(x_i,s_i) - \sum_s p(s|x_i;w)\Phi_j(x_i,s)\right) - \lambda w_j$$

$$\sum_{s} p(s|x_{i};w) \Phi_{j}(x_{i},s) = \sum_{s} p(s|x_{i};w) \sum_{j=1}^{m} \phi_{k}(x_{i},j,s_{j-1},s_{j})$$
$$= \sum_{j=1}^{m} \sum_{a,b} \sum_{s:s_{j-1}=a,s_{b}=b} p(s|x_{i};w) \phi_{k}(x_{i},j,s_{j-1},s_{j})$$

Need forward and backward messages See notes for full details!

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:
 - Perceptron
 - CRF (untuned)

- ~90% / ~50%
- ~95% / ~55%
- 96.2% / 86.0%
- 96.8% / 86.8%
- 96.9% / 86.9%
- 96.7% / ??
- 95.7% / 76.2%
- Upper bound:

~98%

Cyclic Network [Toutanova et al 03] $(u_3)^2$

W

 (w_1)

 t_1

 w_1

- Train two MEMMs, multiple together to score
- And be very careful
 - Tune regularization
 - Try lots of different features
 - See paper for full details

(c) Bidirectional Dependency Network MM

 $\ldots (\frac{w_3}{\cdot})$

 w_3

(b) Right-to-Left to Right CMM

 (w_n)

 $t_n^{\cdot \cdot \cdot}$

 $w_{n^{\bullet}}$

: Dependency networks: (a) the (standard) left-to er CMM, (b) the (reversed) right-to-left CMM, ar ectional dependency nerwork. w_2 w_3

(c) Bidirectional Dependency N lel. ng expressive templates leads to a large nui Irresput 1. Dependency her suitable as see of star sufferization in the 60 nditional log in fight mo ingenbidusedi byalpdepiondemoaxienworkentropy

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - TnT (HMM++):
 - Maxent P(s_i|x):
 - MEMM tagger:
 - Perceptron
 - CRF (untuned)
 - Cyclic tagger:
 - Upper bound:

~90% / ~50% ~95% / ~55% 96.2% / 86.0% 96.8% / 86.8% 96.9% / 86.9% 96.7% / ?? 95.7% / 76.2% 97.2% / 89.0% ~98%