CSE 517
Natural Language Processing
Winter2015

Feature Rich Models

Yejin Choi - University of Washington

[Slides from Jason Eisner, Dan Klein, Luke Zettlemoyer]

Feature Rich Models

= Throw anything you want into the stew
= Add a bonus for this, a penalty for that, etc.

"11,001 New Features for Statistical Machine Translation",
(D. Chiang, K. Knight, and W. Wang), NAACL, 2009. Best
Paper Award.

Probabilistic Models

(Unstructured) categorization:

= Nalve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:

= Perceptron
= Maximum Entropy

Structured prediction:
= HMMs

» PCFG Models

= |IBM Models

Structured prediction:

= Perceptron for Structured
Prediction

= MEMM (Maximum Entropy
Markov Model)

» CRF (Conditional Random
Fields)

Structured Prediction with

Perceptrons and CRFs

S
I

VP

/\PP
/NP v o /e

\'/ N P D N
Time flies like an arrow

S

Tlme flles Ilke an arrow

S _ EEE

/\VP v SI
NP V/\
N /TR X NE
N N V D N VvV V V D N
Time flies like an arrow Time flies like an arrow

p(category | message)

goodmail

Reply today to claim your ...

spam

Reply today to claim your ...

goodmail

Wanna get pizza tonight?

spam

Wanna get pizza tonight?

goodmail

Thx; consider enlarging the ...

spam

Thx; consider enlarging the ...

goodmail

Enlarge your hidden ...

spam

Enlarge your hidden ...

p(RHS | LHS)

S> NP VP S> N VP S > NP[+wh]V S/VINP

S-> VP NP S> DetN S$> PPP

o(RHS | LHS)

S> NP VP S> N VP S 2> NP[+wh] V S/VINP
S-> VP NP S> DetN S> PPP
NP > NP VP NP> N VP NP > NP CP/NP

NP> VP NP NP > Det N NP > NP PP

p(parse | sentence)

S

VP
/pp
NP
PN
N V P D N

Time flies like an arrow

S

/\VP
L S

N N V D N
Time flies like an arrow

S
I

VP

" ep
v/

\'"/ N P D N
Time flies like an arrow

/\

\"/
V/\ NP
N S
\"/ V V D N
Time flies like an arrow

p(tag sequence | word sequence)

N V P D N \"/ N P D N
Time flies like an arrow Time flies like an arrow
N N VD N VvV V V D N

Time flies like an arrow Time flies like an arrow

Today’s general problem

= (Given some input X
= Consider a set of candidate outputs y

» (Classifications for x (small number: often just 2)

= Taggings of x (exponentially many)

= Parses of x (exponential, even infinite)

= Translations of x (exponential, even infinite)

. Structured prediction

o Want to find the “best” y, given x

Scoring by Linear Models

= (Given some input X
= Consider a set of candidate outputs y

= Define a scoring function score(X,Y)
Linear function: A sum of feature weights (you pick the features!)

score(z,y) = Hk[k(T ?Jj

= Choose y that maximizes score(X,y)

Scoring by Linear Models

= (Given some input X
= Consider a set of candidate outputs y

= Define a scoring function score(X,Y)
Linear function: A sum of feature weights (you pick the features!)

score(x,y) = 0 flz,y)

his linear decision rule is sometimes called a “perceptron.”
It's a “structured perceptron” if it does structured prediction
(number of y candidates is unbounded, e.g., grows with |x|).

= Choose y that maximizes score(X,y)

Probabilistic Models

(Unstructured) categorization:

= Naive Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:

Perceptron
= Maximum Entropy

Structured prediction:
= HMMs

» PCFG Models

= |IBM Models

Structured prediction:

= Perceptron for Structured
Prediction

= MEMM (Maximum Entropy
Markov Model)

» CRF (Conditional Random
Fields)

Perceptron Training Algorithm

= jnitialize © (usually to the zero vector)

" repeat:
= Pick a training example (x,Y)
= Model predicts y* that maximizes score(x,y™)

= Update weights by a step of size € > 0:
= 0 + € - (f(xy) = f(x,y*))

If model prediction was correct (y=y*), © doesn’t change.
So once model predicts all training examples correctly, stop.
If some © can do the job, this eventually happens!

(If not, © will oscillate, but the average 6 from all steps
will settle down. So return that eventual average.)

Perceptron Training Algorithm

= jnitialize © (usually to the zero vector)
" repeat:
= Pick a training example (x,Y)
= Model predicts y* that maximizes score(x,y™)

= Update weights by a step of size € > 0:
= 0 + € - (f(xy) = f(x,y*))

If model prediction was wrong (yzy*), then we must have
score(x,y) < score(x,y*) instead of > as we want.

Equivalently, 6-f(x.,y) < 6-f(x,y*)
Equivalently, 6-(f(x,y) - f(x,y*)) < O but we want it positive.
Our update increases it (by € - || f(x,y) — f(x,y*) |[|? = 0)

plparsetsentence)” score(sentence, parse)

S

VP
PP

NP

S

N V P D N

Time flies like an arrow

S

/\vp
L S

N N V D N
Time flies like an arrow

S
I

VP

" ep
v/

\'"/ N P D N
Time flies like an arrow

\"/
V/\ NP
N S
'/ V V D N
Time flies like an arrow

Nuthin’ but adding weights

N-grams. ... + log p(w7 | w5, wé) + log p(w8 | w6, w7) + ...
PCFG: 1og p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
HMM tagging: ... +log p(t7 | t5, t6) + log p(W7 | t7) + ...

NOiSY channel: [Iog p(source)] + [Iog p(data | source)]

Cascade of composed FSTs:
[1og p&)] + [log pB | AY] + [log pcc | B)] + ...
Nalve Bayes:

log p(Class) + log p(featurel | Class) + log p(feature2 | Class) ...

What if our weights were arbitrary real numbers?
Change log p(this | that) to 6(this ; that)

" N-grams. ... +log p(w7 | w5, wé) + log p(w8 | w6, w7) + ...
= PCFGQG: 1og p(NP VP | S) + log p(Papa | NP) + log p(VP PP | \/P) ...
= HMM tagging: ... +log p(t7 | t5, t6) + log p(W7 | t7) + ...
- NOiSY channel: [Iog p(source)] + [Iog p(data | source)]

= Cascade of FSTs:
[1og p&)] + [log pB | AY] + [log pcc | B)] + ...

= Naive Bayes:
log p(Class) + log p(featurel | Class) + log p(feature2 | Class) ...

What if our weights were arbitrary real numbers?
Change log p(this | that) to 6(this ; that)

" N-grams. ..+ o(w7; w5, wé) + (W8 ; Wb, W7) + ...
» PCFG: omnPVvP;S)+ o(Papa:NP)+ 6(VPPP; VP) ...
= HMM tagging: ... + o@7;t5,t6) + o(w7;t7) + ..
= Noisy channel: [e(source)] + [o(data ; source)]
= Cascade of FSTs:

[e]+[o@:;n]+[oc;:B)] +..

= Naive Bayes:
0(Class) + 0(featurel ; Class) + 0(feature2 ; Class) ...

In practice, 6 is a hash table
Maps from feature name (a string or object) to feature weight (a float)
e.g., O(NP VP ; S) = weight of the S > NP VP rule, say -0.1 or +1.3

What if our weights were arbitrary real numbers?
Change log p(this | that) to 6(this ; that)

" N-grams. ..+ ow5wéw7) + (w6 w7 w8) + ...

WCRE DCEGT (s> NPVP)+ 6(NP > Papa) + 6(VP > VP PP) ...
= HMM tagging: ... + otst6t7) + o(t7 > W7) + ...
= Noisy channel: [e(source)] + [o(source, data)]

» Cascade of FSTs:
[e]+[o] +[o6 o] +..

= Naive Bayes: (multi-class) logistic regression
0(Class) + 0(Class, feature 1) + 0(Class, feature?) ...

Finding the best y given x

= At both training & test time, given input X,
perceptron picks y that maximizes score(X,Y)

score(x, 1) Zﬁkfk x,)

= How do we find argmax_y score(X,y)?

= Easy when only a few candidates v (e.g., text classification)
= Just try each y in turn.
= Harder for structured prediction: but you now know how!
= Find the best string, path, or tree ...
= Viterbi for HMM, CKY for trees, stack decoding for MT
= Dynamic programming if possible

Why would we switch from

probabilities to scores?

1. "Discriminative” training (e.qg., perceptron) might work better.
= It tries to optimize weights to actually predict the right y for each x.

= More important than maximizing log p(x,y) = log p(y|x) + log p(x),
I as we've been doing in HMMs and ngFGs.

= Satisfied once the ri%ht y wins. The example puts no more pressure on

the weights to raise log p(y|x). And never pressures us to raise log p(x).

2. Having more freedom in the weights might help?
= Now weights can be positive or negative.
P = Exponentiated weights no longer have to sum to 1.
= But turns out new © vectors can't do more than the old restricted ones.

= Roughly, for every WCFG there’s an equivalent PCFG.
= Though it's true a regularizer might favor one of the new ones.

3. We can throw lots more features into the stewpot.

= Allows model to capture more of the useful predictive patterns!
= So, what features can we throw in efficiently?

Cross-rule substructures

S
VP
NPVP/\PP
NP
. 0 /e
N V P D N

Time flies like an arrow

= Count of “flies” as a verb with subject “time”

Cross-rule substructures

S

VP
NP VF’/\PP
NP
| l /\/\
N V P D N
Time flies like an arrow

= Count of “flies” as a verb with subject “time”

= Count of NP = D N when the NP is the object of a
preposition

Cross-rule substructures

S Two such VPs, so

feature fires twice
VP
" pp

on this (,y) pair
NP VP
NP
e NP
N vV P D N

Time flies like an arrow

= Count of “flies” as a verb with subject “time”

= Count of NP = D N when the NP is the object of a
preposition

= Count of VPs that contain a V

Global features

S
VP
PP
NP VP

| NP
N\
N b D~ N
Time flies like an arrow

Count of "NP and NP” when the two NPs have very
different size or structure [this feature has weight < 0]

The number of PPs is even
The depth of the tree is prime ©
Count of the tag bigram V P in the preterminal seq

Context-specific features

S
VP
NPVP/\PP
NP
7 /N
N V P D N

Time flies like an arrow

= Count of VP - VP PP whose first word is “flies”

Context-specific features

S

VP
NP VP/\PP
NP
e NP
N V P D N
Time flies like an arrow

= Count of VP = VP PP whose first word is “flies”
= Count of VP = VP PP whose right child has width 3

Context-specific features

S

VP
PP
NP VP
/NP
| Ne

N V P D N
OTlme flles le an grrow
= Count of VP - VP PP whose first word is “flies”
= Count of VP = VP PP whose right child has width 3
= Count of VP - VP PP at the end of the input

Context-specific features
S

VP
NP VP/\PP
NP
e NP
N V P D N
Time flies like an arrow

Count of VP = VP PP whose first word is “flies”
Count of VP - VP PP whose right child has width 3
Count of VP - VP PP at the end of the input
Count of VP - VP PP right after a capitalized word

In the case of tagging ...

N V P D N

Time flies like an arrow

Count of tag P as the tag for “like”
Count of tag P
Count of tag P in the middle third of the sentence

Count of tag
Count of tag
Count of tag
Count of tag

pigram V P
bigram V P followed by “an”
bigram V P where P is the tag for “like”

pigram V P where both words are lowercase

Overview: POS tagging Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%

What if feature-rich classifier that predicts each POS
tag one at a time?

= Upper bound: ~98%

What about better features?

= Choose the most common tag
= 90.3% with a bad unknown word model @
= 93.7% with a good one

= What about looking at a word and its @ @ @
environment, but no sequence information?
= Add in previous / next word the
= Previous / next word shapes X X
= Occurrence pattern features [X: x X occurs]
» Crude entity detection e (Inc.|Co.)
» Phrasal verb in sentence? put...... L

= Conjunctions of these things

= Uses lots of features: > 200K

Probabilistic Models

(Unstructured) categorization:

= Nalve Bayes

Feature-rich / (Log)-linear
Models

Perceptron
Maximum Entropy

Unstructured) categorization:

Structured prediction:
= HMMs

» PCFG Models

= |IBM Models

Structured prediction:

= Perceptron for Structured
Prediction

= MEMM (Maximum Entropy
Markov Model)

» CRF (Conditional Random
Fields)

Maximum Entropy (MaxEnt) Models

Also known as “Log-linear” Models (linear if you take log)

exp(w ' f(y))

P(ylx,w) = > grexp(w ! f(y”))

The feature vector representation may include redundant and
overlapping features

Training MaxEnt Models

Maximizing the likelihood of the training data incidentally
maximizes the entropy (hence “maximum entropy”)

exp(w! f(y)) « Make positive
D oyt exp(w'f(y")) - Normalize

P(y|x,w) =

» Maximize the (log) conditional likelihood of training data

exp(w ' f;(y)))

L(w) = log 1:[Py lx',w) = ; log (Zy exp(w ' £;(y))

=Y (wai(yi) —log) eXD("VTfi(Y)))
i Yy

Convex Optimization for Training
L(w)

/ VL(w)=0
W

The likelihood function is convex. (can get global optimum)

Many optimization algorithms/software available.
e Gradient ascent (descent), Conjugate Gradient, L-BFGS, etc
All we need are:

(1) evaluate the function at current ‘w’
(2) evaluate its derivative at current ‘w’

Training MaxEnt Models

Liw)=)>)_ (wai(yi) —log) exp(waz—(y)))
y

2

S (f@(yi)n =S P(yx»fi(y)n)
n Yy

/ Expected count of

Total count of feature n feature n in predicted
In correct candidates candidates

Training with Regularization

L(w) = —k||w[|*+>_ (wai(y@ —log ¥~ exp(wai(y))>
7 y

OL(W) = —2kwp+) (fi(yi)n - ZP(Y|X’&)fi(y>n)
y

/ Expected count of

Big weights are bad feature n in predicted
candidates

OWn,

Total count of feature n
In correct candidates

Graphical Representation of MaxEnt

exp(w ' f(y))
S rexp(w F(y))

()
)6

P(ylx,w) =

Graphical Representation of Naive Bayes

P(X|Y)=1;[P(xj 1Y)
(V)
(x,)(xg) (%)

O, O,

Bayes
y oo o @ @o o0 -
Naive Bayes Classifier Maximum Entropy Classifier

“Generative’” models “Discriminative” models

<> p(input | output) = p(output | input)

=» For instance, for text categorization, =» For instance, for text categorization,
P(words | category) P(category | words)

=» Unnecessary efforts on generating input =» Focus directly on predicting the output

=» Independent assumption among input =» By conditioning on the entire input, we
variables: Given the category, each word is don’t need to worry about the
generated independently from other words independent assumption among input
(too strong assumption in reality!) variables

=» Cannot incorporate arbitrary/redundant/ =» Can incorporate arbitrary features:
overlapping features redundant and overlapping features

Overview: POS tagging Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%

Q: What does this say about sequence models?

Q: How do we add more features to our sequence
models?

Upper bound: ~98%

Probabilistic Models

(Unstructured) categorization:

= Nailve Bayes

Feature-rich / (Log)-linear
Models

Perceptron
Maximum Entropy

Unstructured) categorization:

Structured prediction:
= HMMs

» PCFG Models

= |BM Models

Structured prediction:

= Perceptron for Structured
Prediction

- MEMM (Maximum Entropy
Markov Model)
= CRF (Conditional Random
Fields)

MEMM Taggers

= One step up: also condition on previous tags

m
p(s1...8m|x1. . Tm) = Hp(s@-|31 81,1 .. L)
i=1

m
= Hp(silsi_l, ri1... CL‘m)
=1

= Train up p(si|s;.1,X4 --X,) @s a discrete log-linear (maxent) model,
then use to score sequences

exp(w - @(z1...Tm, % Si—1,Si))

p(silsici, 1 ... Tm) = :
e " Yooexp(w-o(xy...xm,1,8i-1,5"))

» This is referred to as an MEMM tagger [Ratnaparkhi 96]

= Beam search effective! (Why?)

= What's the advantage of beam size 1?

NNP =—> gz > VBN ™ T0O VB NR

LU | V v V |

Secretariat is expected to race tomorrow
NNP —> yBz —™> VBN —™> 70O VB NR
wemm 1 1 1 1 1 t
Secretariat is expected to race tomorrow
“Generative” models “Discriminative” or “Conditional” models
=> joint probability p(words, tags) =>» conditional probability p(tags | words)
=>“generate” input (in addition to tags) =>»“condition” on input
=>» but we need to predict tags, not words! =» Focusing only on predicting tags
Probability of each slice = Probability of each slice =
emission * transition = p(tag_i|tag_i-1, word i)
p(word_i|tag i) * p(tag_i | tag_i-1) = or

p(tag_i|tag_i-1, all words)

=» Cannot incorporate long distance =» Can incorporate long distance features
features

HMM v.s. MEMM

HMM

NNP —> vVBZ —> VBN —> 7O ——> VB —> NR

T T

Secretariat IS expected to race tomorrow

MEMM

NNP ———> VBZ ——> VBN —> 7O ———> VB ——> NR

R L S |

Secretariat IS expected to race tomorrow

The HMM State Lattice / Trellis (repeat slide)

®» ®©® ©®© O
@%@\@%SV) e(interest|V) e(STOPV)
q(VIV) @

e(rates|J) 4\5\

O OSNO
©® ©

START Fed raises interest rates STOP

© © O
©

The MEMM State Lattice / Trellis

® > @%\g ® ® ®
@ @ %{"y P(V|V,x) 90 @ 3
© © © OO
® ® ® ® ©® ©

x = START Fed raises interest rates STOP

DeCOding: p(sl : --Sm|331 - --xm) —];[p(Si‘Sl Ce. 81,1 . ..xm)

= Decoding maxent taggers:
= Just like decoding HMMs
» Viterbi, beam search, posterior decoding
= Viterbi algorithm (HMMs):
= Define 11(i,s;) to be the max score of a sequence of length i ending in tag s;

(i, 8;) = max e(xi|s;)q(si|si—1)m(t —1,8;,-1)
1—1

= Viterbi algorithm (Maxent):

= Can use same algorithm for MEMMSs, just need to redefine T(i,s;) !

7T(i, 87;) — ISIlaXp(Si’SZ'_l, L1CL‘m)ﬂ'(i — 1, 87;_1)
i—1

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%

Upper bound: ~98%

Global Discriminative Taggers

= Newer, higher-powered discriminative sequence models
» CREFs (also perceptrons, M3Ns)
= Do not decompose training into independent local regions
= Can be deathly slow to train — require repeated inference on
training set
= Differences can vary in importance, depending on task

= However: one issue worth knowing about in local models

= “Label bias” and other explaining away effects

MEMM taggers’ local scores can be near one without having both
good “transitions” and “emissions”

This means that often evidence doesn't flow properly
Why isn't this a big deal for POS tagging?
Also: in decoding, condition on predicted, not gold, histories

Probabilistic Models

(Unstructured) categorization:

= Nailve Bayes

Feature-rich / (Log)-linear
Models

Perceptron
Maximum Entropy

Unstructured) categorization:

Structured prediction:
= HMMs

» PCFG Models

= |BM Models

Structured prediction:

Perceptron for Structured
Prediction
- MEMM (Maximum Entropy
Markov Model)
= CRF (Conditional Random
Fields)

[Collins 02]

Linear Models: Perceptron

= The perceptron algorithm
= [teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:
= Start with zero weights Sentence: x=X;...X,

= Visit training instances (x,,y;) one by one
= Make a prediction
y* = argmaxw - ¢(x;, K
Y Tag Sequence:

= |f correct (y*==y;): no change, goto next example! Yy=84...8,
= |If wrong: adjust weights

W =W + ¢($z,yz) — ¢(33z7 y*)

Challenge: How to compute argmax efficiently?

Decoding

= Linear Perceptron s = argmaxw - ®(z,s) -0

= Features must be local, for x=x,...x.,, and s=s,...s_,

— Z¢(x7]7 Sj—15 Sj)
1=1

The MEMM State Lattice / Trellis (repeat)

® > ®\g ® ® @
© © X O NCH
© © © O Y0
® ® ©® © ®

x = START Fed raises interest rates STOP

The Perceptron State Lattice / Trellis

38
N
S
R

&+
+

&.

© 0 0 6
®© G O

x = START Fed raises interest rates STOP

Decoding

= Linear Perceptron s = argmaxw - ®(z,s) -0

= Features must be local, forx =X4... X, @nd $=8,...S

Z¢ £]783 1783

= Define T1(i,s;) to be the max score of a sequence of length i
ending in tag s

7T(i,8') maxw - ¢($72731 Z)Sz)_|_ﬂ-(7/_1 Si— 1)
Si—1

= Viterbi algorithm (HMMs):
m(i,8;) = max e(w;[s;)q(si|si—1)m(e — 1, 8;-1)
= Viterbi algorithm il\/laxent)'

(1, 8;) = maxp(sz Si—1,X1 .+ - Ty)T(t —1,8;_1)
Si—1

Overview: Accuracies

Most freq tag:

Trigram HMM:
™TnT (HMM++):
Maxent P(s;|x):
MEMM tagger:

Perceptron

Upper bound:

= Roadmap of (known / unknown) accuracies:

~90% / ~50%
~95% [/ ~55%
96.2% / 86.0%
96.8% / 86.8%
96.9% / 86.9%
96.7% / ?7?

~98%

Probabilistic Models

(Unstructured) categorization:

= Nailve Bayes

Feature-rich / (Log)-linear
Models

Perceptron
Maximum Entropy

Unstructured) categorization:

Structured prediction:

HMMs
PCFG Models
IBM Models

Structured prediction:

=)

=)

Perceptron for Structured
Prediction

MEMM (Maximum Entropy
Markov Model)

CRF (Conditional Random
Fields)

MEMM v.s. CRF
(Conditional Random Fields)

MEMM

NNP ———> vBZ —> VBN —> 7O ———> VB —> NR

R T T

Secretariat IS expected to race tomorrow
CRF
NNP VBZ VBN TO VB NR

Secretariat IS expected to race tomorrow

Graphical Models

Y{ ——> Y2 ——> Y3

I~ |

X1 X2 X3

= (Conditional probability for each node

" e.g.p(Y3|Y2 X3)forY3

= e.g. p(X3)for X3
= Conditional independence

" e.0.p(Y3]|Y2, X3)=p(Y3]|Y1,Y2 X1, X2, X3)
= Joint probability of the entire graph

= product of conditional probability of each node

Undirected Graphical Model Basics

Y1 Y2 Y3
X1 X2 X3

Conditional independence

» e.g. p(Y3|all other nodes) =p(Y3 | Y3 neighbor)
No conditional probability for each node

Instead, “potential function” for each clique

" eg. o (X1, X2,Y1T) or $(Y1,Y2)

Typically, log-linear potential functions

= o (Y1,Y2)=exp Zk wkfk (Y1, Y2)

Undirected Graphical Model Basics

Y1 Y2 Y3

T~ |

X1 X2 X3

= Joint probability of the entire graph

P(Y)—— [] oo

chque C

E [T ere)

clique C

NN —> yB —™—> VBN ™ TO VB NR

MEMM | § v v v V

Secretariat is expected to race tomorrow
NN VB VBN TO VB NR
cRF | f | | | |
Secretariat is expected to race tomorrow
Directed graphical model Undirected graphical model

“Discriminative” or “Conditional” models
=>» conditional probability p(tags | words)

Probability is defined for each slice = Instead of probability, potential (energy
function) is defined for each slide =
P (tag_i | tag_i-1, word_i) ¢ (tag_i, tag_i-1) * ¢ (tag_i, word_i)
or or
p (tag_i| tag_i-1, all words) o(tag_i, tag_i-1, all words) * ¢ (tag_i, all
words)

=» Can incorporate long distance features

MEMM v.s. CRF

MEMM

NNP ——— VBZ —> VBN ——> 7O ———> VB —> NR

R L S |

Secretariat IS expected to race tomorrow
CRF
NNP VBZ VBN Q0 — VB NR

Secretariat IS expected to race tomorrow

Conditional Random Fields (CRFs)

[Lafferty, McCallum, Pereira 01]
= Maximum entropy (logistic regression)

Sentence: x=x,...X

— sy &P (w- oz, y))
D) Dy &Xp (- ¢(z,y"))

Tag Sequence: y=s,...s

» |Learning: maximize the (log) conditional likelihood of training
data {(z;, y;) iz

a n
87[4(w) = Z <¢J Ti,Yi) Zp Y|z w ¢J :pz,y)> — Aw;
J

1—=1

» Computational Challenges?

= Most likely tag sequence, normalization constant, gradient

Decoding ..

S = argmaxpls|r;,w
= CRFs xplsf;)
= Features must be local, for x=x,...x.,, and s=s,...s_,
exp (w - (z, 5)) S .
p(SQf,’UJ): yS) = Qbﬂ?,],S'_,S'
‘ Soexp (w- ®(x,8)) (:2)]:Zl (& 85-1,%)

— exp (w - ®(x,s))
s 2y exp(w- P(z, "))

= arg max exp (w - ®(z, s))

= argmaxw - ®(z, s)

= Same as Linear Perceptron!!!

W(i, Sz) — ISIIaX ¢(l’, i, Si—1, Sz') + 7T(Z — 1, Sz'—l)
i—1

CRFs: Computing Normalization®

p(s|z;w) = Zexp (w- 2(z, 5)) b(x,s) = Z¢($,j7 Sj—1,55)

o exp (w - P(z,s))

Z exp (w - P(x,5"))=3 exp (Zw - ¢(w, 7, 3j173j))

— Z Hexp (w-¢(x,7,85-1,55))
s’ g

Define norm(i,s;) to sum of scores for sequences ending in position i

norm(i,y;) = Z exp (w - ¢(x,1,8;_1,8;))norm(i —1,8;_1)

= Forward Algorithm! Remember HMM case:
(i, y;) = Z e(zilyi)q(yilyi—1)a(i — 1,yi-1)

Yi—1
= Could also use backward?

CRFs: Computing Gradient™

Slz:w) = exp (w - (2, 5)) D(x,s) = Y T, 7, 81,8
plalriw) = <SRS0 ;qx G510

n

%L(w) = Z((i, s;) Zp (s|xi;w)) — Aw;

1=1

Y p(slziw)®;(ws,) =D plslzi; w) Z(bk(ﬂ?z‘,j, Sj-1,5;)
S S 71=1
= ZZ Z p(s|zi; w)or(wi, J, sj-1, S5)

J=1 a,b s:sj_1=a,sp=b

* Need forward and backward messages

See notes for full details!

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% [?7?

= CRF (untuned) 95.7% 1 76.2%

= Upper bound: ~98%

CyC“C Network [Toutanova et aI_QB]

= Train two MEMMSs,
multiple together to
score

= And be very careful
* Tune regularization

* Try lots of different
features

« See paper for full
details

N NG NG
(a) Left-to-Right CMM

@

Lo

(b) Right-to-Left CMM

@

offolfo

(¢) Bidirectional Dependency N

Figure 1: Dependency networks: (a) the (star
first-order CMM, (b) the (reversed) right-to-I
the bidirectional dependency network.

Overview: Accuracies

= Roadmap of (known / unknown) accuracies:

= Most freq tag: ~90% / ~50%
= Trigram HMM: ~95% / ~55%
= TnT (HMM++): 96.2% / 86.0%
= Maxent P(s;|x): 96.8% / 86.8%
= MEMM tagger: 96.9% / 86.9%
= Perceptron 96.7% [?7?

= CRF (untuned) 95.7% 1 76.2%
= Cyclic tagger: 97.2% / 89.0%

= Upper bound: ~98%

