
CSE 517
Natural Language Processing

Winter2015

Yejin Choi - University of Washington

[Slides from Jason Eisner, Dan Klein, Luke Zettlemoyer]

Feature Rich Models

Feature Rich Models

§  Throw anything you want into the stew
§  Add a bonus for this, a penalty for that, etc.

"11,001 New Features for Statistical Machine Translation",
(D. Chiang, K. Knight, and W. Wang), NAACL, 2009. Best
Paper Award.

Probabilistic Models
(Unstructured) categorization:
§  Naïve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:
§  Perceptron
§  Maximum Entropy

Structured prediction:
§  Perceptron for Structured

Prediction
§  MEMM (Maximum Entropy

Markov Model)
§  CRF (Conditional Random

Fields)

Structured prediction:
§  HMMs
§  PCFG Models
§  IBM Models

Structured Prediction with

Perceptrons and CRFs

Time flies like an arrow
N

PP
NP

V P D N

VP
S

Time flies like an arrow
N

VP
NP

N V D N

S

NP

Time flies like an arrow
V

PP
NP

N P D N

VP

VP

S

Time flies like an arrow
V

NP
V V D N

V

V

S

S
… ?

Reply today to claim your … Reply today to claim your …

goodmail spam

Wanna get pizza tonight? Wanna get pizza tonight?

goodmail spam

Thx; consider enlarging the … Thx; consider enlarging the …

goodmail spam

Enlarge your hidden … Enlarge your hidden …

goodmail spam

p(category | message)

…
S à

S à

NP VP NP[+wh] V S/V/NP

VP NP PP P

S à

S à

N VP

Det N

S à

S à

p(RHS | LHS)

…

…
S à

S à

NP VP NP[+wh] V S/V/NP

VP NP PP P

S à

S à

N VP

Det N

S à

S à

…
NP à

NP à

NP VP NP CP/NP

VP NP NP PP

NP à

NP à

N VP

Det N

NP à

NP à

p(RHS | LHS)

Time flies like an arrow

Time flies like an arrow

Time flies like an arrow

Time flies like an arrow

…

p(parse | sentence)

Time flies like an arrow

Time flies like an arrow

Time flies like an arrow

Time flies like an arrow

…

p(tag sequence | word sequence)

Structured prediction

Today’s general problem
§  Given some input x
§  Consider a set of candidate outputs y

§  Classifications for x (small number: often just 2)
§  Taggings of x (exponentially many)
§  Parses of x (exponential, even infinite)
§  Translations of x (exponential, even infinite)
§  …

§  Want to find the “best” y, given x

§  Given some input x
§  Consider a set of candidate outputs y
§  Define a scoring function score(x,y)

Linear function: A sum of feature weights (you pick the features!)

§  Choose y that maximizes score(x,y)

Scoring by Linear Models

Ranges over all features,
e.g., k=5 (numbered features)
or k=“see Det Noun” (named features)

Whether (x,y) has feature k(0 or 1)
Or how many times it fires (≥ 0)
Or how strongly it fires (real #)

Weight of feature k
(learned or set by hand)

§  Given some input x
§  Consider a set of candidate outputs y
§  Define a scoring function score(x,y)

Linear function: A sum of feature weights (you pick the features!)

§  Choose y that maximizes score(x,y)

Scoring by Linear Models

(learned or set by hand)

This linear decision rule is sometimes called a “perceptron.”
It’s a “structured perceptron” if it does structured prediction
(number of y candidates is unbounded, e.g., grows with |x|).

Probabilistic Models
(Unstructured) categorization:
§  Naïve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:
§  Perceptron
§  Maximum Entropy

Structured prediction:
§  Perceptron for Structured

Prediction
§  MEMM (Maximum Entropy

Markov Model)
§  CRF (Conditional Random

Fields)

Structured prediction:
§  HMMs
§  PCFG Models
§  IBM Models

Perceptron Training Algorithm
§  initialize θ (usually to the zero vector)
§  repeat:

§  Pick a training example (x,y)
§  Model predicts y* that maximizes score(x,y*)
§  Update weights by a step of size ε > 0:

 θ = θ + ε · (f(x,y) – f(x,y*))

If model prediction was correct (y=y*), θ doesn’t change.
So once model predicts all training examples correctly, stop.
If some θ can do the job, this eventually happens!

 (If not, θ will oscillate, but the average θ from all steps
will settle down. So return that eventual average.)

Perceptron Training Algorithm
§  initialize θ (usually to the zero vector)
§  repeat:

§  Pick a training example (x,y)
§  Model predicts y* that maximizes score(x,y*)
§  Update weights by a step of size ε > 0:

 θ = θ + ε · (f(x,y) – f(x,y*))

If model prediction was wrong (y≠y*), then we must have
score(x,y) ≤ score(x,y*) instead of > as we want.

Equivalently, θ·f(x,y) ≤ θ·f(x,y*)
Equivalently, θ·(f(x,y) - f(x,y*)) ≤ 0 but we want it positive.
Our update increases it (by ε · || f(x,y) – f(x,y*) ||2 ≥ 0)

Time flies like an arrow

Time flies like an arrow

Time flies like an arrow

Time flies like an arrow

…

p(parse | sentence) score(sentence, parse)

Nuthin’ but adding weights

§  n-grams: … + log p(w7 | w5, w6) + log p(w8 | w6, w7) + …

§  PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

§  HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

§  Noisy channel: [log p(source)] + [log p(data | source)]
§  Cascade of composed FSTs:

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …
§  Naïve Bayes:

 log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

Change log p(this | that) to θ(this ; that)

What if our weights were arbitrary real numbers?

§  n-grams: … + log p(w7 | w5, w6) + log p(w8 | w6, w7) + …

§  PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

§  HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

§  Noisy channel: [log p(source)] + [log p(data | source)]
§  Cascade of FSTs:

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …
§  Naïve Bayes:

 log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

Change log p(this | that) to θ(this ; that)

What if our weights were arbitrary real numbers?

§  n-grams: … + θ(w7 ; w5, w6) + θ(w8 ; w6, w7) + …

§  PCFG: θ(NP VP ; S) + θ(Papa ; NP) + θ(VP PP ; VP) …

§  HMM tagging: … + θ(t7 ; t5, t6) + θ(w7 ; t7) + …

§  Noisy channel: [θ(source)] + [θ(data ; source)]
§  Cascade of FSTs:

 [θ(A)] + [θ(B ; A)] + [θ(C ; B)] + …
§  Naïve Bayes:

 θ(Class) + θ(feature1 ; Class) + θ(feature2 ; Class) …

In practice, θ is a hash table
Maps from feature name (a string or object) to feature weight (a float)
e.g., θ(NP VP ; S) = weight of the S à NP VP rule, say -0.1 or +1.3

Change log p(this | that) to θ(this ; that)

What if our weights were arbitrary real numbers?

§  n-grams: … + θ(w5 w6 w7) + θ(w6 w7 w8) + …

§  PCFG: θ(S à NP VP) + θ(NP à Papa) + θ(VP à VP PP) …

§  HMM tagging: … + θ(t5 t6 t7) + θ(t7 à w7) + …

§  Noisy channel: [θ(source)] + [θ(source, data)]
§  Cascade of FSTs:

 [θ(A)] + [θ(A, B)] + [θ(B, C)] + …
§  Naïve Bayes:

 θ(Class) + θ(Class, feature 1) + θ(Class, feature2) …

WCFG

(multi-class) logistic regression

§  At both training & test time, given input x,
perceptron picks y that maximizes score(x,y)

§  How do we find argmax_y score(x,y)?
§  Easy when only a few candidates y (e.g., text classification)

§  Just try each y in turn.

§  Harder for structured prediction: but you now know how!
§  Find the best string, path, or tree …
§  Viterbi for HMM, CKY for trees, stack decoding for MT
§  Dynamic programming if possible

Finding the best y given x

Why would we switch from
probabilities to scores?

1.  “Discriminative” training (e.g., perceptron) might work better.
§  It tries to optimize weights to actually predict the right y for each x.
§  More important than maximizing log p(x,y) = log p(y|x) + log p(x),

as we’ve been doing in HMMs and PCFGs.
§  Satisfied once the right y wins. The example puts no more pressure on

the weights to raise log p(y|x). And never pressures us to raise log p(x).

2. Having more freedom in the weights might help?
§  Now weights can be positive or negative.
§  Exponentiated weights no longer have to sum to 1.
§  But turns out new θ vectors can’t do more than the old restricted ones.

§  Roughly, for every WCFG there’s an equivalent PCFG.
§  Though it’s true a regularizer might favor one of the new ones.

3. We can throw lots more features into the stewpot.
§  Allows model to capture more of the useful predictive patterns!
§  So, what features can we throw in efficiently?

Cross-rule substructures

Time flies like an arrow
N

PP
NP

V P D N

VP
S

NP VP

§  Count of “flies” as a verb with subject “time”

Cross-rule substructures

Time flies like an arrow
§  Count of “flies” as a verb with subject “time”
§  Count of NP à D N when the NP is the object of a

preposition

N

PP
NP

V P D N

VP
S

NP VP

Cross-rule substructures

Time flies like an arrow
N

PP
NP

V P D N

VP
S

NP VP

§  Count of “flies” as a verb with subject “time”
§  Count of NP à D N when the NP is the object of a

preposition
§  Count of VPs that contain a V

Two such VPs, so
feature fires twice
on this (x,y) pair

Global features

Time flies like an arrow
N

PP
NP

V P D N

VP
S

NP VP

§  Count of “NP and NP” when the two NPs have very
different size or structure [this feature has weight < 0]

§  The number of PPs is even
§  The depth of the tree is prime J
§  Count of the tag bigram V P in the preterminal seq

Context-specific features

N

PP
NP

V P D N

VP
S

NP VP

§  Count of VP à VP PP whose first word is “flies”

Time flies like an arrow

Context-specific features

N

PP
NP

V P D N

VP
S

NP VP

§  Count of VP à VP PP whose first word is “flies”
§  Count of VP à VP PP whose right child has width 3

Time flies like an arrow

Context-specific features

N

PP
NP

V P D N

VP
S

NP VP

§  Count of VP à VP PP whose first word is “flies”
§  Count of VP à VP PP whose right child has width 3
§  Count of VP à VP PP at the end of the input

Time flies like an arrow
0 1 2 3 4 5

Context-specific features

N

PP
NP

V P D N

VP
S

NP VP

§  Count of VP à VP PP whose first word is “flies”
§  Count of VP à VP PP whose right child has width 3
§  Count of VP à VP PP at the end of the input
§  Count of VP à VP PP right after a capitalized word

Time flies like an arrow

In the case of tagging …

Time flies like an arrow
N V P D N

§  Count of tag P as the tag for “like”
§  Count of tag P
§  Count of tag P in the middle third of the sentence
§  Count of tag bigram V P
§  Count of tag bigram V P followed by “an”
§  Count of tag bigram V P where P is the tag for “like”
§  Count of tag bigram V P where both words are lowercase

Overview: POS tagging Accuracies

§  Roadmap of (known / unknown) accuracies:
§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%

§  What if feature-rich classifier that predicts each POS
tag one at a time?

§  Upper bound: ~98%

What about better features?
§  Choose the most common tag

§  90.3% with a bad unknown word model
§  93.7% with a good one

§  What about looking at a word and its
environment, but no sequence information?
§  Add in previous / next word the __
§  Previous / next word shapes X __ X
§  Occurrence pattern features [X: x X occurs]
§  Crude entity detection __ ….. (Inc.|Co.)
§  Phrasal verb in sentence? put …… __
§  Conjunctions of these things

§  Uses lots of features: > 200K

s3

x3 x4 x2

Probabilistic Models
(Unstructured) categorization:
§  Naïve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:
§  Perceptron
§  Maximum Entropy

Structured prediction:
§  Perceptron for Structured

Prediction
§  MEMM (Maximum Entropy

Markov Model)
§  CRF (Conditional Random

Fields)

Structured prediction:
§  HMMs
§  PCFG Models
§  IBM Models

Maximum Entropy (MaxEnt) Models

�  Also	 known	 as	 “Log-‐linear”	 Models	 (linear	 if	 you	 take	 log)	

�  The	 feature	 vector	 representa>on	 may	 include	 redundant	 and	
overlapping	 features	

Training MaxEnt Models
�  Maximizing	 the	 likelihood	 of	 the	 training	 data	 incidentally	
maximizes	 the	 entropy	 (hence	 “maximum	 entropy”)	

Convex Optimization for Training

�  The	 likelihood	 func>on	 is	 convex.	 (can	 get	 global	 op>mum)	
�  Many	 op>miza>on	 algorithms/soFware	 available.	

�  	 Gradient	 ascent	 (descent),	 Conjugate	 Gradient,	 L-‐BFGS,	 etc	

�  All	 we	 need	 are:	
(1)	 evaluate	 the	 func>on	 at	 current	 ‘w’	
(2)	 evaluate	 its	 deriva>ve	 at	 current	 ‘w’	

Training MaxEnt Models

Training with Regularization

Graphical Representation of MaxEnt

Y

x1 x2 … xn

Output

Input

Graphical Representation of Naïve Bayes

Y

x1 x2 … xn

Output

Input

)|()|(
1

YxPYXP
j

j∏
=

=

Naïve Bayes Classifier Maximum Entropy Classifier

“Generative” models
è p(input | output)
è  For instance, for text categorization,

P(words | category)
è Unnecessary efforts on generating input

“Discriminative” models
è p(output | input)
è  For instance, for text categorization,

P(category | words)
è Focus directly on predicting the output

è  Independent assumption among input
variables: Given the category, each word is
generated independently from other words
(too strong assumption in reality!)

è Cannot incorporate arbitrary/redundant/
overlapping features

è By conditioning on the entire input, we
don’t need to worry about the
independent assumption among input
variables

è Can incorporate arbitrary features:
redundant and overlapping features

MaxEnt
Naïve
Bayes

Y

x1 x2 … xn

Y

x1 x2 … xn

Overview: POS tagging Accuracies

§  Roadmap of (known / unknown) accuracies:
§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%

§  Q: What does this say about sequence models?
§  Q: How do we add more features to our sequence

models?

§  Upper bound: ~98%

Probabilistic Models
(Unstructured) categorization:
§  Naïve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:
§  Perceptron
§  Maximum Entropy

Structured prediction:
§  Perceptron for Structured

Prediction
§  MEMM (Maximum Entropy

Markov Model)
§  CRF (Conditional Random

Fields)

Structured prediction:
§  HMMs
§  PCFG Models
§  IBM Models

MEMM Taggers
§  One step up: also condition on previous tags

§  Train up p(si|si-1,x1...xm) as a discrete log-linear (maxent) model,

then use to score sequences

§  This is referred to as an MEMM tagger [Ratnaparkhi 96]
§  Beam search effective! (Why?)
§  What’s the advantage of beam size 1?

p(s1 . . . sm|x1 . . . xm) =
mY

i=1

p(si|s1 . . . si�1, x1 . . . xm)

=
mY

i=1

p(si|si�1, x1 . . . xm)

p(si|si�1, x1 . . . xm) =
exp

(

w · �(x1 . . . xm, i, si�1, si))P
s0 exp (w · �(x1 . . . xm, i, si�1, s0))

HMM MEMM

“Generative” models
è joint probability p(words, tags)
è “generate” input (in addition to tags)
è  but we need to predict tags, not words!

“Discriminative” or “Conditional” models
è conditional probability p(tags | words)
è “condition” on input
è Focusing only on predicting tags

Probability of each slice =
emission * transition =
p(word_i | tag_i) * p(tag_i | tag_i-1) =

è Cannot incorporate long distance
features

Probability of each slice =
p(tag_i | tag_i-1, word_i)
 or
p(tag_i | tag_i-1, all words)

è Can incorporate long distance features

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

HMM

MEMM

HMM v.s. MEMM

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

HMM

MEMM

The HMM State Lattice / Trellis (repeat slide)

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

 START Fed raises interest rates STOP

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)
q(V|V)

e(STOP|V)

The MEMM State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

 x = START Fed raises interest rates STOP

p(V|V,x)

Decoding:
§  Decoding maxent taggers:

§  Just like decoding HMMs
§  Viterbi, beam search, posterior decoding

§  Viterbi algorithm (HMMs):
§  Define π(i,si) to be the max score of a sequence of length i ending in tag si

§  Viterbi algorithm (Maxent):

§  Can use same algorithm for MEMMs, just need to redefine π(i,si) !

�(i, si) = max

si�1

e(xi|si)q(si|si�1)�(i� 1, si�1)

�(i, si) = max

si�1

p(si|si�1, x1 . . . xm)�(i� 1, si�1)

p(s1 . . . sm|x1 . . . xm) =
mY

i=1

p(si|s1 . . . si�1, x1 . . . xm)

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%

§  Upper bound: ~98%

Global Discriminative Taggers
§  Newer, higher-powered discriminative sequence models

§  CRFs (also perceptrons, M3Ns)
§  Do not decompose training into independent local regions
§  Can be deathly slow to train – require repeated inference on

training set
§  Differences can vary in importance, depending on task
§  However: one issue worth knowing about in local models

§  “Label bias” and other explaining away effects
§  MEMM taggers’ local scores can be near one without having both

good “transitions” and “emissions”
§  This means that often evidence doesn’t flow properly
§  Why isn’t this a big deal for POS tagging?
§  Also: in decoding, condition on predicted, not gold, histories

Probabilistic Models
(Unstructured) categorization:
§  Naïve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:
§  Perceptron
§  Maximum Entropy

Structured prediction:
§  Perceptron for Structured

Prediction
§  MEMM (Maximum Entropy

Markov Model)
§  CRF (Conditional Random

Fields)

Structured prediction:
§  HMMs
§  PCFG Models
§  IBM Models

Linear Models: Perceptron
§  The perceptron algorithm

§  Iteratively processes the training set, reacting to training errors
§  Can be thought of as trying to drive down training error

§  The (online) perceptron algorithm:
§  Start with zero weights
§  Visit training instances (xi,yi) one by one

§  Make a prediction

§  If correct (y*==yi): no change, goto next example!
§  If wrong: adjust weights

w = w + �(xi, yi)� �(xi, y
⇤)

y⇤ = argmax
y

w · �(xi, y)
Tag Sequence:
y=s1…sm

Sentence: x=x1…xm

Challenge: How to compute argmax efficiently?

[Collins 02]

Decoding
§  Linear Perceptron

§  Features must be local, for x=x1…xm, and s=s1…sm

s⇤ = argmax
s

w · �(x, s) · �

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

The MEMM State Lattice / Trellis (repeat)

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

 x = START Fed raises interest rates STOP

p(V|V,x)

x

x x

x

The Perceptron State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

 x = START Fed raises interest rates STOP

w�Φ(x,3,V,V)

+

+
+

+

Decoding
§  Linear Perceptron

§  Features must be local, for x=x1…xm, and s=s1…sm

§  Define π(i,si) to be the max score of a sequence of length i

ending in tag si

§  Viterbi algorithm (HMMs):

§  Viterbi algorithm (Maxent):

�(i, si) = max

si�1

p(si|si�1, x1 . . . xm)�(i� 1, si�1)

⇡(i, si) = max

si�1

e(xi|si)q(si|si�1)⇡(i� 1, si�1)

s⇤ = argmax
s

w · �(x, s) · �

�(i, si) = max

si�1

w · ⇥(x, i, si�i, si) + �(i� 1, si�1)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%
§  Perceptron 96.7% / ??

§  Upper bound: ~98%

Probabilistic Models
(Unstructured) categorization:
§  Naïve Bayes

Feature-rich / (Log)-linear
Models

(Unstructured) categorization:
§  Perceptron
§  Maximum Entropy

Structured prediction:
§  Perceptron for Structured

Prediction
§  MEMM (Maximum Entropy

Markov Model)
§  CRF (Conditional Random

Fields)

Structured prediction:
§  HMMs
§  PCFG Models
§  IBM Models

MEMM v.s. CRF
(Conditional Random Fields)

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

MEMM

CRF

Graphical Models

§  Conditional probability for each node
§  e.g. p(Y3 | Y2, X3) for Y3
§  e.g. p(X3) for X3

§  Conditional independence
§  e.g. p(Y3 | Y2, X3) = p(Y3 | Y1, Y2, X1, X2, X3)

§  Joint probability of the entire graph
= product of conditional probability of each node

Y1 Y2 Y3

X1 X2 X3

Undirected Graphical Model Basics

§  Conditional independence
§  e.g. p(Y3 | all other nodes) = p(Y3 | Y3’ neighbor)

§  No conditional probability for each node
§  Instead, “potential function” for each clique

§  e.g. φ (X1, X2, Y1) or φ (Y1, Y2)
§  Typically, log-linear potential functions

è φ (Y1, Y2) = exp Σk wk fk (Y1, Y2)

Y1 Y2 Y3

X1 X2 X3

Undirected Graphical Model Basics

§  Joint probability of the entire graph

Y1 Y2 Y3

X1 X2 X3

P(Y

) = 1
Z

ϕ(Y

C)

clique C
∏

Z =
Y

∑ ϕ(Y

C)

clique C
∏

MEMM CRF

Directed graphical model Undirected graphical model

“Discriminative” or “Conditional” models
è conditional probability p(tags | words)

Probability is defined for each slice =

P (tag_i | tag_i-1, word_i)
 or
p (tag_i | tag_i-1, all words)

Instead of probability, potential (energy
function) is defined for each slide =
φ (tag_i, tag_i-1) * φ (tag_i, word_i)
 or
φ (tag_i, tag_i-1, all words) * φ (tag_i, all
words)

è Can incorporate long distance features

Secretariat is expected to race tomorrow

NN
P

VB
Z

VBN TO VB NR

Secretariat is expected to race tomorrow

NN
P

VB
Z

VBN TO VB NR

MEMM

CRF

MEMM v.s. CRF

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

CRF

Secretariat is expected to race tomorrow

NNP VBZ VBN TO VB NR

MEMM

Conditional Random Fields (CRFs)
§  Maximum entropy (logistic regression)

§  Learning: maximize the (log) conditional likelihood of training
data

§ Computational Challenges?
§  Most likely tag sequence, normalization constant, gradient

p(y|x;w) = exp

(

w · �(x, y)
)P

y0 exp (w · �(x, y0)
)

{(xi, yi)}ni=1

@

@wj
L(w) =

nX

i=1

�j(xi, yi)�

X

y

p(y|xi;w)�j(xi, y)

!
� �wj

Sentence: x=x1…xm

Tag Sequence: y=s1…sm

[Lafferty, McCallum, Pereira 01]

Decoding
§  CRFs

§  Features must be local, for x=x1…xm, and s=s1…sm

§  Same as Linear Perceptron!!!

⇡(i, si) = max

si�1

�(x, i, si�i, si) + ⇡(i� 1, si�1)

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

s

⇤
= argmax

s
p(s|x;w)

argmax

s

exp (w · �(x, s))P
s0 exp (w · �(x, s0))= argmax

s
exp (w · �(x, s))

= argmax

s
w · �(x, s)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

CRFs: Computing Normalization*

§  Forward Algorithm! Remember HMM case:

§  Could also use backward?

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

X

s0

exp
�
w ·�(x, s0)

�

�(i, yi) =
X

yi�1

e(xi|yi)q(yi|yi�1)�(i� 1, yi�1)

=

X

s0

Y

j

exp

(

w · �(x, j, sj�1, sj))

=

X

s0

exp

0

@
X

j

w · �(x, j, sj�1, sj)

1

A

Define norm(i,si) to sum of scores for sequences ending in position i

norm(i, yi) =
X

si�1

exp

(

w · �(x, i, si�1, si))norm(i� 1, si�1)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

CRFs: Computing Gradient*

§  Need forward and backward messages
See notes for full details!

p(s|x;w) = exp (w · �(x, s))P
s0 exp (w · �(x, s0))

@

@wj
L(w) =

nX

i=1

�j(xi, si)�

X

s

p(s|xi;w)�j(xi, s)

!
� �wj

X

s

p(s|xi;w)�j(xi, s) =
X

s

p(s|xi;w)
mX

j=1

�k(xi, j, sj�1, sj)

=
mX

j=1

X

a,b

X

s:sj�1=a,sb=b

p(s|xi;w)�k(xi, j, sj�1, sj)

�(x, s) =
mX

j=1

�(x, j, sj�1, sj)

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%
§  Perceptron 96.7% / ??
§  CRF (untuned) 95.7% / 76.2%

§  Upper bound: ~98%

Cyclic Network
§  Train two MEMMs,

multiple together to
score

§  And be very careful
•  Tune regularization
•  Try lots of different

features
•  See paper for full

details

[Toutanova et al 03]

Cyclic Tagging
[Toutanova et al 03]

 Another idea: train a bi-directional MEMM

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

(a) Left-to-Right CMM

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

Figure 1: Dependency networks: (a) the (standard) left-to-right
first-order CMM, (b) the (reversed) right-to-left CMM, and (c)
the bidirectional dependency network.

the model.
Having expressive templates leads to a large number

of features, but we show that by suitable use of a prior
(i.e., regularization) in the conditional loglinear model –
something not used by previous maximum entropy tag-
gers – many such features can be added with an overall
positive effect on the model. Indeed, as for the voted per-
ceptron of Collins (2002), we can get performance gains
by reducing the support threshold for features to be in-
cluded in the model. Combining all these ideas, together
with a few additional handcrafted unknown word fea-
tures, gives us a part-of-speech tagger with a per-position
tag accuracy of 97.24%, and a whole-sentence correct
rate of 56.34% on Penn Treebank WSJ data. This is the
best automatically learned part-of-speech tagging result
known to us, representing an error reduction of 4.4% on
the model presented in Collins (2002), using the same
data splits, and a larger error reduction of 12.1% from the
more similar best previous loglinear model in Toutanova
and Manning (2000).

2 Bidirectional Dependency Networks

When building probabilistic models for tag sequences,
we often decompose the global probability of sequences
using a directed graphical model (e.g., an HMM (Brants,
2000) or a conditional Markov model (CMM) (Ratna-
parkhi, 1996)). In such models, the probability assigned
to a tagged sequence of words is the product
of a sequence of local portions of the graphical model,
one from each time slice. For example, in the left-to-right
CMM shown in figure 1(a),

That is, the replicated structure is a local model
.2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
estimated in some sophisticated way; it is typical in tag-
ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
for with a maxent model of the form:

In this case, the and can have joint effects on ,
but there are not joint features involving all three vari-
ables (though there could have been such features). We
say that this model uses the feature templates
(previous tag features) and (current word fea-
tures).
Clearly, both the preceding tag and following tag
carry useful information about a current tag . Uni-

directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of on
is explicit in the local model, while the in-
fluence of on is implicit in the local model at the
next position (via). The situation is re-
versed for the right-to-left CMM in figure 1(b).
From a seat-of-the-pantsmachine learning perspective,

when building a classifier to label the tag at a certain posi-
tion, the obvious thing to do is to explicitly include in the
local model all predictive features, no matter on which
side of the target position they lie. There are two good
formal reasons to expect that a model explicitly condi-
tioning on both sides at each position, like figure 1(c)
could be advantageous. First, because of smoothing
effects and interaction with other conditioning features
(like the words), left-to-right factors like
do not always suffice when is implicitly needed to de-
termine . For example, consider a case of observation
bias (Klein and Manning, 2002) for a first-order left-to-
right CMM. The word to has only one tag (TO) in the
PTB tag set. The TO tag is often preceded by nouns, but
rarely by modals (MD). In a sequence will to fight, that
trend indicates that will should be a noun rather than a
modal verb. However, that effect is completely lost in a
CMM like (a): prefers the modal
tagging, and TO is roughly 1 regardless of

. While the model has an arrow between the two tag
positions, that path of influence is severed.3 The same

2Throughout this paper we assume that enough boundary
symbols always exist that we can ignore the differences which
would otherwise exist at the initial and final few positions.

3Despite use of names like “label bias” (Lafferty et al., 2001)
or “observation bias”, these effects are really just unwanted
explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
modeled as if they were.

 And be careful
experimentally!
 Try lots of features on

dev. set
 Use L2 regularization
 see paper...

Overview: Accuracies
§  Roadmap of (known / unknown) accuracies:

§  Most freq tag: ~90% / ~50%
§  Trigram HMM: ~95% / ~55%
§  TnT (HMM++): 96.2% / 86.0%
§  Maxent P(si|x): 96.8% / 86.8%
§  MEMM tagger: 96.9% / 86.9%
§  Perceptron 96.7% / ??
§  CRF (untuned) 95.7% / 76.2%
§  Cyclic tagger: 97.2% / 89.0%
§  Upper bound: ~98%

