
CSE 517

Natural Language Processing

Winter 2015

Yejin Choi

University of Washington

[Many slides from Dan Klein, Michael Collins, Luke Zettlemoyer]

Hidden Markov Models

Overview

 Hidden Markov Models

 Learning

 Supervised: Maximum Likelihood

 Inference (or Decoding)

 Viterbi

 Forward Backward

 N-gram Taggers

Pairs of Sequences
 Consider the problem of jointly modeling a pair of strings

 E.g.: part of speech tagging

 Q: How do we map each word in the input sentence onto the
appropriate label?

 A: We can learn a joint distribution:

 And then compute the most likely assignment:

DT NN IN NN VBD NNS VBD

The average of interbank offered rates plummeted …

DT NNP NN VBD VBN RP NN NNS

The Georgia branch had taken on loan commitments …

Classic Solution: HMMs
 We want a model of sequences y and observations x

where y0=START and we call q(y’|y) the transition distribution and e(x|y) the
emission (or observation) distribution.

 Assumptions:

 Tag/state sequence is generated by a markov model

 Words are chosen independently, conditioned only on the tag/state

 These are totally broken assumptions: why?

y1 y2 yn

x1 x2 xn

y0
𝑦𝑛+1

Example: POS Tagging

The Georgia branch had taken on loan commitments …

 HMM Model:

 States Y = {DT, NNP, NN, ... } are the POS tags

 Observations X = V are words

 Transition dist’n q(yi |yi -1) models the tag sequences

 Emission dist’n e(xi |yi) models words given their POS

 Q: How to we represent n-gram POS taggers?

DT NNP NN VBD VBN RP NN NNS

Example: Chunking

 Goal: Segment text into spans with certain properties

 For example, named entities: PER, ORG, and LOC

Germany ’s representative to the European Union ’s

veterinary committee Werner Zwingman said on Wednesday

consumers should…

[Germany]LOC ’s representative to the [European Union]ORG ’s

veterinary committee [Werner Zwingman]PER said on

Wednesday consumers should…

 Q: Is this a tagging problem?

Example: Chunking

Germany/BL ’s/NA representative/NA to/NA the/NA European/BO

Union/CO ’s/NA veterinary/NA committee/NA Werner/BP Zwingman/CP

said/NA on/NA Wednesday/NA consumers/NA should/NA…

[Germany]LOC ’s representative to the [European Union]ORG ’s

veterinary committee [Werner Zwingman]PER said on Wednesday

consumers should…

 HMM Model:

 States Y = {NA,BL,CL,BO,CO,BP,CP} represent beginnings

(BL,BO,BP) and continuations (CL,CO,CP) of chunks, as well

as other words (NA)

 Observations X = V are words

 Transition dist’n q(yi |yi -1) models the tag sequences

 Emission dist’n e(xi |yi) models words given their type

A:

Example: HMM Translation Model

Thank you , I shall do so gladly .

1 3 7 6 9

1 2 3 4 5 76 8 9

Model Parameters

Transitions: p(A2 = 3 | A1 = 1)Emissions: e(F1 = Gracias | EA1 = Thank)

Gracias , lo haré de muy buen grado .

8 8 88

E:

F:

HMM Inference and Learning

 Learning
 Maximum likelihood: transitions q and emissions e

 Inference (linear time in sentence length!)

 Viterbi:

 Forward Backward:

Learning: Maximum Likelihood

 Learning
 Maximum likelihood methods for estimating

transitions q and emissions e

 Will these estimates be high quality?

 Which is likely to be more sparse, q or e?

 Can use all of the same smoothing tricks we saw for

language models!

Learning: Low Frequency Words

 Typically, linear interpolation works well for transitions

 However, other approaches used for emissions
 Step 1: Split the vocabulary

 Frequent words: appear more than M (often 5) times

 Low frequency: everything else

 Step 2: Map each low frequency word to one of a small, finite
set of possibilities

 For example, based on prefixes, suffixes, etc.

 Step 3: Learn model for this new space of possible word
sequences

Low Frequency Words: An Example

Named Entity Recognition [Bickel et. al, 1999]
 Used the following word classes for infrequent words:

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)

Word class Example Intuition

twoDigitNum 90 Two digit year

fourDigitNum 1990 Four digit year

containsDigitAndAlpha A8956-67 Product code

containsDigitAndDash 09-96 Date

containsDigitAndSlash 11/9/89 Date

containsDigitAndComma 23,000.00 Monetary amount

containsDigitAndPeriod 1.00 Monetary amount,percentage

othernum 456789 Other number

allCaps BBN Organization

capPeriod M. Person name initial

firstWord first word of sentence no useful capitalization information

initCap Sally Capitalized word

lowercase can Uncapitalized word

other , Punctuation marks, all other words

18

Low Frequency Words: An Example

 Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

 firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA
lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity

SC = Start Company

CC = Continue Company

SL = Start Location

CL = Continue Location

…

Inference (Decoding)
 Problem: find the most likely (Viterbi) sequence under the model

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ)…..

NNP VBZ NN NNS CD NN

NNP NNS NN NNS CD NN

NNP VBZ VB NNS CD NN

logP = -23

logP = -29

logP = -27

 In principle, we’re done – list all possible tag sequences,
score each one, pick the best one (the Viterbi state sequence)

Fed raises interest rates 0.5 percent .

NNP VBZ NN NNS CD NN .

 Given model parameters, we can score any sequence pair

Finding the Best Trajectory
 Too many trajectories (state sequences) to list

 Option 1: Beam Search

 A beam is a set of partial hypotheses

 Start with just the single empty trajectory

 At each derivation step:

 Consider all continuations of previous hypotheses

 Discard most, keep top k

<>

Fed:N

Fed:V

Fed:J

raises:N

raises:V

raises:N

raises:V

 Beam search works ok in practice
 … but sometimes you want the optimal answer

 … and there’s usually a better option than naïve beams

The State Lattice / Trellis

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)
q(V|V)

e(STOP|V)

Dynamic Programming!

 Define π(i,yi) to be the max score of a sequence of
length i ending in tag yi

 We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Time flies like an arrow;

Fruit flies like a banana

18

19

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

Fruit Flies Like Bananas

𝜋 𝑖, 𝑦𝑖 ≔ max𝑝(𝑥1 … 𝑥𝑖, 𝑦0 … 𝑦𝑖)

20

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

Fruit Flies Like Bananas

=0

=0.01

=0.03

21

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

Fruit Flies Like Bananas

=0

=0.01

=0.03 =0.005

22

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

Fruit Flies Like Bananas

=0

=0.01

=0.03 =0.005

=0.007

=0

23

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

Fruit Flies Like Bananas

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

Fruit Flies Like Bananas

24

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

Fruit Flies Like Bananas

25

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

Fruit Flies Like Bananas

26

𝜋(1, 𝑁)

𝜋(1, 𝑉)

𝜋(1, 𝐼𝑁)

𝜋(2, 𝑁)

𝜋(2, 𝑉)

𝜋(2, 𝐼𝑁)

𝜋(3, 𝑁)

𝜋(3, 𝑉)

𝜋(3, 𝐼𝑁)

𝜋(4, 𝑁)

𝜋(4, 𝑉)

𝜋(4, 𝐼𝑁)

S
T
A

R
T

S
T

O
P

=0

=0.01

=0.03 =0.005

=0.007

=0

=0.0007

=0.0003

=0.0001

=0.00001

=0

=0.00003

Dynamic Programming!

 Define π(i,yi) to be the max score of a sequence of
length i ending in tag yi

 We now have an efficient algorithm. Start with i=0 and
work your way to the end of the sentence!

Viterbi Algorithm
 Dynamic program for computing (for all i)

 Iterative computation

For i = 1 ... n:

 Also, store back pointers

The Viterbi Algorithm: Runtime
 Linear in sentence length n

 Polynomial in the number of possible tags |K|

 Specifically:

 Total runtime:

 Q: Is this a practical algorithm?

 A: depends on |K|….

Marginal Inference
 Problem: find the marginal probability of each tag for yi

q(NNP|♦) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ)…..

NNP VBZ NN NNS CD NN

NNP NNS NN NNS CD NN

NNP VBZ VB NNS CD NN

logP = -23

logP = -29

logP = -27

 In principle, we’re done – list all possible tag sequences,
score each one, sum over all of the possible values for yi

Fed raises interest rates 0.5 percent .

NNP VBZ NN NNS CD NN .

 Given model parameters, we can score any sequence pair

Marginal Inference
 Problem: find the marginal probability of each tag for yi

Compare it to “Viterbi Inference”

The State Lattice / Trellis: Viterbi

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

e(Fed|N)

e(raises|V) e(interest|V)

e(rates|J)
q(V|V)

e(STOP|V)

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

The State Lattice / Trellis: Marginal

Dynamic Programming!

 Sum over all paths, on both sides of each yi

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

The State Lattice / Trellis: Forward

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

^

N

V

J

D

$

START Fed raises interest rates STOP

The State Lattice / Trellis: Backward

Forward Backward Algorithm

 Two passes: one forward, one back
 Forward:

 For i = 1 … n

 Backward:

 For i = n-1 ... 1

Forward Backward: Runtime
 Linear in sentence length n

 Polynomial in the number of possible tags |K|

 Specifically:

 Total runtime:

 Q: How does this compare to Viterbi?

 A: Exactly the same!!! (actually x2, a constant factor…)

What about n-gram Taggers?
 States encode what is relevant about the past

 Transitions P(s|s’) encode well-formed tag sequences

 In a bigram tagger, states = tags

 In a trigram tagger, states = tag pairs

<,>

s1 s2 sn

x1 x2 xn

s0

< , y1> < y1, y2> < yn-1, yn>

<>

s1 s2 sn

x1 x2 xn

s0

< y1> < y2> < yn>

The State Lattice / Trellis

N,N

$

START Fed raises interest …

^,^

N,V

N,D

D,V

…

…

N,N

$

^,^

^,N

N,D

D,V

…

…

N,N

$

^,^

^,V

N,D

D,V

…

…

N,N

$

^,^

^,V

N,D

D,V

…

…

… … … …

e(Fed|N)

e(raises|D)

e(interest|V)

Quiz: p(S1) vs. p(S2)

41

 S1 = Colorless green ideas sleep furiously.

 S2 = Furiously sleep ideas green colorless
 “It is fair to assume that neither sentence (S1) nor (S2) had ever

occurred in an English discourse. Hence, in any statistical model for
grammaticalness, these sentences will be ruled out on identical
grounds as equally "remote" from English” (Chomsky 1957)

 How would p(S1) and p(S2) compare based on (smoothed)

bigram language models?

 How would p(S1) and p(S2) compare based on marginal

probability based on POS-tagging HMMs?

 i.e., marginalized over all possible sequences of POS tags

